论文部分内容阅读
用支持向量机解决多分类问题是目前众多学者研究的热点话题.将已有的最小二乘支持向量分类-回归机算法推广到M空间进行了理论分析,在基于支持向量机的三分类算法基础上,提出了两个新的K(K〉3)类多分类算法:一对一对多与一对一对一算法.对所有数据集进行分类时,在已有的多分类算法的基础上采用加校正的技巧:忽略准确率低的子分类器.数值实验证明了该技巧的有效性,并且校正后的准确率比校正前平均提高了4.61%。