论文部分内容阅读
文中主要解决传统的ID3算法不能处理增量数据集构造决策树的问题.在传统ID3决策树算法和原有增量算法的基础上,利用信息论中熵变原理的特点,对与增量决策树算法相关的三个定理进行相应的改进,在理论上证明了改进的增量决策树算法的有效性和可靠性.同时对增量决策树算法和ID3算法的复杂度进行了对比分析,得出增量决策树算法的实例费用和信息熵费用都高于ID3算法的结论.最后通过一个实验证明,改进的增量决策树算法能够构造出与ID3算法形态基本相同的决策树.