论文部分内容阅读
为了解决运输船的精细分类识别问题,针对在港口、航道拍摄的大量运输船图像,将一个8层卷积神经网络和支持向量机结合起来,通过用运输船训练集对网络进行监督训练,然后提取卷积神经网络第一个全连接层的特征,训练支持向量机后便可以对运输船进行分类识别,最后与其他全连接层的特征进行对比。实验结果表明,该方法能够实现运输船类型精细分类识别,平均检测准确率达到88.6%。