论文部分内容阅读
数据缺失、格式不同一、难以采集、无法判断数据背后真正的意义等,这些问题无疑将是沃森等AI在未来所面临的挑战。
比尔·盖茨曾经说过,人工智能(AI)会是人类未来发展的一件“大事”。
目前,AI技术已经凭借其巨大的潜力和能力,在各个领域展现出了造福人类的可能性。医疗领域,更是人工智能直接造福人类的核心领域之一。英国《自然》杂志的一篇癌症相关研究论文指出,利用深度学习算法来根据照片分类皮肤癌的AI系统,表现不亚于专业临床医生。从最简单的手机App到最复杂的诊断任务,AI正依靠强大的算法处理着几十年积累下来的医学研究数据库,不断为人类的生命健康保驾护航。
去年11月,Google的研究人员在《美国医学会杂志》(JAMA)上发表了一篇论文,表明Google经过大量眼底图像数据训练的深度学习算法,可以在诊断糖尿病性视网膜病变上,具有90%以上的高准确性。Google方面宣布已将本用于翻译和图像识别的消费级机器学习技术,应用到了医疗领域。
7月14日,阿里云人工智能ET夺得肺结节诊断世界冠军。目前,这一技术已经集成到阿里云ET医疗大脑中。ET医疗大脑可在精准医疗、医学影像、药效挖掘、新药研发、健康管理、可穿戴设备等领域承担医生助手角色,并已在肺癌、宫颈癌、甲状腺癌等领域实现突破。
病了就去看AI医生,已不是天方夜谭。
机器人医生“沃森”
IBM花费重金开发的人工智能“Watson”沃森早已声名在外。这位机器人医生曾经在美国的智力竞赛《危险边缘》中打败过人类冠军,在日本仅用10分钟就确诊了一例罕见白血病并提供个性化的诊疗方案,在印度为一名晚期癌症患者找到了诊断方案……
在进入中国市场后,沃森在天津的义诊现场同样表现非凡。在得到天津市第三中心医院的肿瘤科主任吴尘轩描述的患者病情信息后,沃森仅用10秒便为这位胃癌局部晚期患者给出了详尽的治疗方案分析。“这与医生给出的治疗方案完全一致,即通过化疗将肿瘤缩小后再进行手术,”吴尘轩表示。
不过,在得天独厚的优势背后,沃森等人工智能医生的发展也遇到阻碍。对诸多研究机构来说,巨额支出无疑是最大的障碍。据得克萨斯大学行政系统公布的一份审计结果显示,IBM沃森医疗和MD安德森的合作自2013年10月启动以来,MD安德森已经为此投资超过6200万美元。报告称:“本报告所述结果不应被解释为对其系统在当前状态的科学基础或能力的意见。”简单来说,就是沃森并非是功能不行,而是“烧钱太快”。
沃森为何会如此迅速地“烧钱”呢?原来,开发AI醫疗需要特定类型的数据,这些数据通常要么非常紧缺,要么难以访问。这也直接导致了这些数据的价格不会低,从而拉高了成本。这不是沃森独有的问题,而是整个医疗机器学习领域面临的通病。
正如AlphaGo通过不断研究棋谱和与自己、名家下棋来不断进步一样,沃森也是通过不断地调整其内部程序来“学习”,并对一些问题给出它判断最接近正确的答案(例如,哪张放射影像上显示了肿瘤)。在训练过程中,正确的答案必须是已知的,这样系统才能不断得到正确的反馈。系统所训练的问题越多,其正确率就会越高,如此机器便能学习在特定问题上的诊断(如通过X光影像判定恶性肿瘤)。
事实上,数据缺失、格式不同一、难以采集、无法判断数据背后真正的意义等,这些问题无疑将是沃森等AI在未来所面临的挑战。
这也导致短期内,沃森这样的AI“医生”并不能取代传统意义上真正的人类医生。上海交通大学医学院附属仁济医院肿瘤科主任王理伟表示,“沃森被动地接收输入的信息,但并不具备自我甄别能力与动态观察能力。所以未来此类医疗机器人若能参与到诊疗过程中,很重要的一点就是必须确保第一手资料的完备准确。因此,将其称为学习软件更为恰当。”
王理伟指出,一个医生对具体患者的诊断,往往需要结合检查数据、基础疾病、病史、并发症等多因素综合考虑。“比如胃癌患者可能有潜在的心肺功能或肾功能障碍,还有糖尿病等基础代谢问题,我们在日常诊疗中可以结合多学科会诊给出妥善方案,对于机器人而言,从海量的现有知识中找到应对个体患者的方案,很大程度上依赖了信息系统的高度完善。”
的确,患者是否有吸毒等不良习惯,饮食是否健康安全,是否拥有清新空气和优质水源等等,这些都是一个真正医生应该考虑的因素,而这也往往是数据的空白——目前,几乎没有任何医疗机构能可靠地获取大部分患者的此类数据,许多医院甚至连电子化的信息系统都没能投入使用。但可以预见的是,当决定健康的社会因素和并发症、病史等问题在信息系统的进一步发展和普及下得到解决之后,沃森凭借其巨大的数据库及强劲的计算能力支撑,在诊断疑难杂症等领域将给人类医生提供很大的帮助。
随时随地的“健康管家”
除了沃森等类似于AlphaGo的超级智能辅助诊疗之外,健康管理和便携设备无疑也是AI发展下取得突破的应用方式。
通过AI系统的应用来达到健康管理的目的在国外并不罕见。例如Alme Health Coach系统能通过人工智能技术评估慢性病病人的状态,协助患者规划日常的饮食起居。它更像是一位“机器人护士”,通过了解病人饮食习惯、锻炼周期、服药习惯等个人生活习惯,利用人工智能对数据进行处理并对疾病整体状态进行评估,最终给出个性化健康管理方案。此外,它还能帮助病人规划健康安排,监控睡眠,提供药物和测试提醒,甚至可以反向推导出病人不依从建议的心理。这套系统的潜力在于它能够以一种浸入式的方式无微不至地帮助慢性病患者养成更健康的生活方式。不仅如此,AI系统使得可穿戴设备、智能手机、电子病历等功能得以整合。
比尔·盖茨曾经说过,人工智能(AI)会是人类未来发展的一件“大事”。

目前,AI技术已经凭借其巨大的潜力和能力,在各个领域展现出了造福人类的可能性。医疗领域,更是人工智能直接造福人类的核心领域之一。英国《自然》杂志的一篇癌症相关研究论文指出,利用深度学习算法来根据照片分类皮肤癌的AI系统,表现不亚于专业临床医生。从最简单的手机App到最复杂的诊断任务,AI正依靠强大的算法处理着几十年积累下来的医学研究数据库,不断为人类的生命健康保驾护航。
去年11月,Google的研究人员在《美国医学会杂志》(JAMA)上发表了一篇论文,表明Google经过大量眼底图像数据训练的深度学习算法,可以在诊断糖尿病性视网膜病变上,具有90%以上的高准确性。Google方面宣布已将本用于翻译和图像识别的消费级机器学习技术,应用到了医疗领域。
7月14日,阿里云人工智能ET夺得肺结节诊断世界冠军。目前,这一技术已经集成到阿里云ET医疗大脑中。ET医疗大脑可在精准医疗、医学影像、药效挖掘、新药研发、健康管理、可穿戴设备等领域承担医生助手角色,并已在肺癌、宫颈癌、甲状腺癌等领域实现突破。
病了就去看AI医生,已不是天方夜谭。
机器人医生“沃森”
IBM花费重金开发的人工智能“Watson”沃森早已声名在外。这位机器人医生曾经在美国的智力竞赛《危险边缘》中打败过人类冠军,在日本仅用10分钟就确诊了一例罕见白血病并提供个性化的诊疗方案,在印度为一名晚期癌症患者找到了诊断方案……
在进入中国市场后,沃森在天津的义诊现场同样表现非凡。在得到天津市第三中心医院的肿瘤科主任吴尘轩描述的患者病情信息后,沃森仅用10秒便为这位胃癌局部晚期患者给出了详尽的治疗方案分析。“这与医生给出的治疗方案完全一致,即通过化疗将肿瘤缩小后再进行手术,”吴尘轩表示。
不过,在得天独厚的优势背后,沃森等人工智能医生的发展也遇到阻碍。对诸多研究机构来说,巨额支出无疑是最大的障碍。据得克萨斯大学行政系统公布的一份审计结果显示,IBM沃森医疗和MD安德森的合作自2013年10月启动以来,MD安德森已经为此投资超过6200万美元。报告称:“本报告所述结果不应被解释为对其系统在当前状态的科学基础或能力的意见。”简单来说,就是沃森并非是功能不行,而是“烧钱太快”。
沃森为何会如此迅速地“烧钱”呢?原来,开发AI醫疗需要特定类型的数据,这些数据通常要么非常紧缺,要么难以访问。这也直接导致了这些数据的价格不会低,从而拉高了成本。这不是沃森独有的问题,而是整个医疗机器学习领域面临的通病。
正如AlphaGo通过不断研究棋谱和与自己、名家下棋来不断进步一样,沃森也是通过不断地调整其内部程序来“学习”,并对一些问题给出它判断最接近正确的答案(例如,哪张放射影像上显示了肿瘤)。在训练过程中,正确的答案必须是已知的,这样系统才能不断得到正确的反馈。系统所训练的问题越多,其正确率就会越高,如此机器便能学习在特定问题上的诊断(如通过X光影像判定恶性肿瘤)。
事实上,数据缺失、格式不同一、难以采集、无法判断数据背后真正的意义等,这些问题无疑将是沃森等AI在未来所面临的挑战。

这也导致短期内,沃森这样的AI“医生”并不能取代传统意义上真正的人类医生。上海交通大学医学院附属仁济医院肿瘤科主任王理伟表示,“沃森被动地接收输入的信息,但并不具备自我甄别能力与动态观察能力。所以未来此类医疗机器人若能参与到诊疗过程中,很重要的一点就是必须确保第一手资料的完备准确。因此,将其称为学习软件更为恰当。”
王理伟指出,一个医生对具体患者的诊断,往往需要结合检查数据、基础疾病、病史、并发症等多因素综合考虑。“比如胃癌患者可能有潜在的心肺功能或肾功能障碍,还有糖尿病等基础代谢问题,我们在日常诊疗中可以结合多学科会诊给出妥善方案,对于机器人而言,从海量的现有知识中找到应对个体患者的方案,很大程度上依赖了信息系统的高度完善。”
的确,患者是否有吸毒等不良习惯,饮食是否健康安全,是否拥有清新空气和优质水源等等,这些都是一个真正医生应该考虑的因素,而这也往往是数据的空白——目前,几乎没有任何医疗机构能可靠地获取大部分患者的此类数据,许多医院甚至连电子化的信息系统都没能投入使用。但可以预见的是,当决定健康的社会因素和并发症、病史等问题在信息系统的进一步发展和普及下得到解决之后,沃森凭借其巨大的数据库及强劲的计算能力支撑,在诊断疑难杂症等领域将给人类医生提供很大的帮助。
随时随地的“健康管家”
除了沃森等类似于AlphaGo的超级智能辅助诊疗之外,健康管理和便携设备无疑也是AI发展下取得突破的应用方式。
通过AI系统的应用来达到健康管理的目的在国外并不罕见。例如Alme Health Coach系统能通过人工智能技术评估慢性病病人的状态,协助患者规划日常的饮食起居。它更像是一位“机器人护士”,通过了解病人饮食习惯、锻炼周期、服药习惯等个人生活习惯,利用人工智能对数据进行处理并对疾病整体状态进行评估,最终给出个性化健康管理方案。此外,它还能帮助病人规划健康安排,监控睡眠,提供药物和测试提醒,甚至可以反向推导出病人不依从建议的心理。这套系统的潜力在于它能够以一种浸入式的方式无微不至地帮助慢性病患者养成更健康的生活方式。不仅如此,AI系统使得可穿戴设备、智能手机、电子病历等功能得以整合。