论文部分内容阅读
针对传统的实例选择算法会误删训练集中非噪声样本、算法效率低的不足,提出了一种面向K最近邻(KNN)的遗传实例选择算法。该算法采用基于决策树和遗传算法的二阶段筛选机制,先使用决策树确定噪声样本存在的范围;再使用遗传算法在该范围内精确删除噪声样本,可有效地降低误删率并提高效率,采用基于最近邻规则的验证集选择策略,进一步提高了遗传算法实例选择的准确度;最后引进基于均方误差(MSE)的分类精度惩罚函数来计算遗传算法中个体的适应度,提高有效性和稳定性。在20个数据集上,该方法相较于基于预分类的KNN(PRKN