论文部分内容阅读
通过提取人脸图像的Gabor特征,结合Adaboost,进行人脸表情识别(FER)。针对Gabor特征维数高、冗余大的特点,引入Adaboost算法进行特征选择降低特征向量的维数。然后再以支持向量机(SVM)和最近邻分类法相结合组成分类器进行分类。该方法综合运用了Gabor特征对于人脸表情的良好表征能力、Adaboost算法的强大特征选择能力以及SVM在处理少样本、高维数问题中的优势。在JAFFE库上进行测试的结果验证了该法的有效性。从Adaboost所选择的特征集可知,在眼和嘴区域提取的特征,对于FER是最为重要的。