Transformer网络在雷达辐射源识别中的应用

来源 :应用科技 | 被引量 : 0次 | 上传用户:amperezh
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
由于雷达辐射源信号在时序上具有强相关性,针对卷积神经网络难以提取信号的时序逻辑相关性特征的缺点,本文提出了基于Transformer网络的雷达辐射源个体识别的方法.该方法首先以3台信号发生器模拟雷达辐射源信号,同时采集数据并建立数据库;然后对原始信号提取相位特征以及包络特征;最后采用基于注意力机制的Transformer网络对信号进行进一步的特征提取并分类.实验结果表明,该算法对于包络特征以及相位特征敏感度不同,同时数据样本长度对于识别效果会产生影响,最终结合相位特征的网络模型在信噪比为15 dB时识别率可以达到98.9%.
其他文献
针对原始C3D卷积神经网络参数量庞大,以及在压缩网络参数的同时进一步提高视频数据集中人体行为的识别率的问题,提出一种改进型C3D卷积神经网络模型。首先,采用全局平均池化和卷积分类操作取代全连接层,形成全卷积网络形式,之后在模型中分别引入卷积核为(3×3×3)和(1×1×1)的三维卷积层,并在此基础上采用卷积核为(3×1×7)和(3×7×1)的三维卷积层对多个(3×3×3)卷积层合并。最后,将所提方