论文部分内容阅读
文章提出一种融合互近邻和可信度的K近邻算法,根据互近邻的概念删除噪声数据;利用由近邻诱导待分类样本标签的可信度,避免待分类样本近邻中大类吃小类的概率。该算法不仅可以减小噪声数据对分类的影响,而且一定程度上增强了K近邻分类算法的稳定性。该算法在UCI标准数据集上进行了测试,性能相当或优于其他分类器。