线性模相关论文
Koszul代数具有相当好的性质且是一类非常重要的代数。但是,我们所知道的Koszul代数只有非常有限的特殊类,能够构造出来的Koszul代......
假设V是域k上的3维向量空间,a,b,c是V的一组基,Λ=∧V是V上的外代数.令Ftm(a,b)=(a b a b......a b)(m+t)×(m+t-1)为人上的矩阵,其中a,b是V......
设V是域k上的3维向量空间,{a,b,c}是V的一组基,Λ=∧V是V上的外代数.令Ftm(a,b)=(a ba b……a b)(m+t)×(m+t-1)是Λ上(a,b)型矩阵,m,t是......
外代数是定义在一个向量空间V上的一类非常重要的代数,外代数及其上的模具有很强的应用背景.近年来,对外代数及其上的模有一系列的......
外代数是定义在一个向量空间V上的一类非常重要的代数,外代数及其上的模具有很强的应用背景.近年来,对外代数及其上的模有一系列的......
设V是向量空间,Λ=ΛV是V上的外代数.以F1n(a, b)为表示矩阵的线性模称为循环长度为n的复杂度为2的极小线性模. 设a, b, c是V中......
外代数是定义在一个向量空间V上的一类非常重要的代数,外代数及其模具有很强的应用背景,而外代数上模的扩张问题对于模的结构的研......
本文主要刻划了外代数Λ=Λ(V)(其中V是代数闭域k上的3维向量空间)上复杂度为2的极小Koszul模的迭代扩张的表示矩阵. 设M是一个......
设V是代数闭域七上的向量空间,b是V中线性无关的元素,八V是V上的外代数.将表示矩阵具有如下形式的∧V-模M叫做循环长度为m的复杂度......
研究了线性情况,自聚焦和自散焦非线性情况下Parity-Time对称Scarff复合势中二级孤子和三级孤子的存在与稳定性.对于线性情况,数值......
在本论文中,我们通过李代数的方法,构造了任意维度的AdS时空背景下的有质量和无质量的标量模,矢量模以及自旋为2的模的解。这些解......