Koszul代数相关论文
Snashall和Solberg在2004年利用Hochschild上同调对有限维k-代数A上的有限生成模引入了支撑簇(Support variety)理论,并提出了Snasha......
Koszul代数具有相当好的性质且是一类非常重要的代数。但是,我们所知道的Koszul代数只有非常有限的特殊类,能够构造出来的Koszul代......
代数的Hochschild同调可以看作是微分形式模的非交换推广,而与之密切相关的循环同调则既是de Rham同调的非交换版本又是代数K-理论......
Koszul代数是一类非常重要的代数,它在表示论及其相关领域的研究中扮演着重要的角色.而代数的Koszul性和分配性之间又有着密切的联......
在非交换射影代数几何的研究中,需要将一个诺特分次代数的商范畴用其它代数的商范畴来刻画.在非交换奇点解消理论中,需要将Gorenst......
该文中我们首先考察了三角Koszul代数.其次,我们推广了Koszul代数和Koszul复形,引入并系统地研究了高次Koszul代数和高次Koszul复......
Koszul代数,d-Koszul代数,分段-Koszul代数都是只有一个跳跃度的Koszul型代数.为了突破这个局限,吕与赵于2010年引入了(p,λ)-Koszul代......
引入复杂度是为了研究群的表示,它也是研究遗传代数表示理论的新方法.利用复杂度还可以研究群代数的A-Rquiver结构.有限复杂度的自......
Koszul代数是一类十分重要的代数类型.它在代数拓扑、交换代数、Lie代数理论以及量子群中都有着重要的应用.而有限维代数的Hochschil......
Koszul代数是一类十分重要的代数类型.它在代数拓扑、交换代数、Lie代数理论以及量子群中都有着重要的应用.而有限维代数的Hochsch......
Koszul代数是一类非常重要且有趣的代数.它在表示理论的研究中扮演着重要的角色.近几年,人们对Koszul代数及其表示的研究越来越多.......
首先给出了Koszul代数的张量积的复杂度,然后研究了Koszul遗传代数上的Koszul单列模,并证明了Koszul遗传代数上的Koszul模M的Koszu......

