位势问题相关论文
多极边界元法(FM-BEM)是近几年才发展起来的一种能快速计算的数值方法,它融合了多极展开法(FMM)和边界元法(BEM)。这种方法的计算量和存储......
无网格法是近年来发展起来的一种新的数值模拟方法。该方法基于一些节点构造近似函数,不会产生因网格重构和畸变引起的困难,具有数值......
近几十年来,分数阶微积分理论逐渐引起研究人员的重视并得到迅速发展,相对于传统整数阶微积分理论,分数阶导数理论框架下的数学模......
数学物理反问题是现代工程技术中广泛存在的一类问题,研究这类问题的科学计算方法具有广泛的应用背景。薄体结构、涂层结构由于其......
该文介绍了边界元法的发展历史和研究现状,分析了边界元法中几乎奇异积分问题出现的场合,定义了常规结构和薄体结构的概念,综述了......
边界元法具有只在边界离散单元、计算精度高和适合处理无限域问题等优点。但是边界元法求解大规模问题时最终都将化为对线性方程组......
边界元法(Boundary Elernent Method,简称BEM)是新兴的离散解析工具,广泛应用于机械,土木建筑,化工,海洋,航天和电气等工程领域,成为当代......
众所周知,在数值模拟技术中有限元法占统治地位,在科学与工程计算领域中得到了广泛的应用。然而,有限元法需剖分整个计算区域,对于某些......
快速多极虚边界元法是近期发展起来的一种数值算法;其对大规模复杂问题的计算,能在保证求解精度的前提下,使计算量和存储量均比常......
证明了柱体自由扭转的边界积分方程被积函数的散度等于零,将翘曲函数表示为翘曲势函数在边界点的数值计算,避免求解奇异的数值积分......
针对正交各向异性位势问题,提出了Trefftz有限元解法.通过坐标变换和拉普拉斯方程特征函数,求得正交各向异性问题的完备解系,进而......

