可导函数相关论文
文[1]通过证明,给出了不等式|f(x1)-f(x2)|...
导数作为高中数学的工具性知识,应用相当广泛,是近年各地高考的重点与热点,利用导数研究函数极值问题更是学习中的重点。同学们在学习......
在引入导数后,对函数的研究方便了许多,但是由于课本对很多概念的理论性要求不高,对各个概念的关系阐述不够清晰,使学生在应用导数......
一、选择题(每小题4分,共40分) 1.已知[a>b>0],则下列不等式中总成立的是( ) A. [a+1b>b+1a] B. [a+1a>b+1b] C. [ba>b+1a+1] D......
归纳推理是推理方式里面的一种,在数学里我们经常会运用推理来猜测命题的结论以及对结论的判断.但在运用推理这种方式来解决遇到的......
<正>探究寻源,抓住问题的本质,能使我们居高临下处理极值点偏移问题,在教学中游刃有余。文献[1]中邢友宝老师针对解决函数极值点偏......
【摘要】解析函数作为一种具有某种特性的可导函数,在我们研究复变函数时,常常将其作为研究的主要对象。研究解析函数的性质,对我们正......
导数是研究函数的重要的方法,理解导数的概念、掌握导数研究函数的方法至关重要. 在学习中,我们利用导数研究函数问题时常会犯一些错......
本学位论文主要讨论了一类推广的Sikkema-Bernstein型算子的逼近.第二章首先研究了这类一元算子的各种保持性质,并研究了其逼近度估......
1指导思想与理论依据 本节课以探究性理论“在问题解决中自主学习”为指导思想,因为“问题学习”是建构主义所提倡的一种教......
1教学中思考在学习新课程标准人教B版教材高中数学选修(2—2)导数及其应用一章时,我们逐步知道了对于可导函数y=f(x),可用它的导函......
在近几年高考和模拟考中,有一类抽象的可导函数问题频频亮相,题目以能力立意短小精悍,难度较大区分度高,多为客观题中的压轴题.除......
对于可导函数在闭区间上的最值问题,大家都比较熟悉.但对可导函数在无穷区间上的最值问题,由于没有区间的端点,除了要求出函数的极......
导数是微分学中的重要基础概念.当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限.在一个函数存在导数时,称这个函数......
借助与凸函数的Hermite-Hadamard-Fejér型不等式有关的恒等式,对于其导数的绝对值的幂具有凸性的函数,导出了一些Hermite-Hadamar......

