极小元相关论文
逻辑代数是各种逻辑系统研究的一个重要方向,就是用代数的方法研究逻辑问题.目前已有多种成熟的逻辑系统建立.王国俊教授以(?)*-Lind......
本文主要研究定义在RN上的两类非线性Schr(?)dinger方程组和一类四次非线性Schr(?)dinger方程normalized解的存在性及其轨道稳定性,其......
最速下降算法是最优化方法的一个重要组成部分,常用于解决无约束的最优化问题。无论在经济管理、交通运输、生产管理,还是在科学计......
近年来,Ekeland变分原理被广泛的应用到了许多不同的领域,例如非线性分析、优化控制理论、动力系统、博弈论、凸分析及向量优化问题......
学位
关于非线性泛函分析中不动点理论的研究已经引起了很多人的兴趣.与此同时也取得了丰硕的成果,其中包括Caristi不动点定理和与其相关......
在这篇文章中,我们主要研究由Banach空间中的基序列生成的Borel等价关系。首先,我们分别给出了两个这样的等价关系之间的一个归约和......
最优化理论在现实生活中的各领域都有广泛应用,极值对于最优化理论的研究非常重要.本文主要讨论了锥上方下半连续的向量值映射的极......
本文主要研究了在容许函数类中一类Ginzburg-Landau泛函的极小元的性态. 在第一章前言部分我们给出了本篇论文要证明的结论. ......
在第一章中,我们列出了本文要证明的几个主要结论.在第二章中我们证明了极小元uε的W1,p强收敛性,并刻画了它的极限函数:当拓扑度为零......
在本文中,记B={x∈Rn;∣x∣< 1},Sn-1={x∈Rn+1;x21+x22+…+x2n=1,xn+1=0},Sn={x∈Rn+1;x21+x22+…+x2n+x2n+1=1}。我们在函数类空间......
在本文中,设Ω为R2中光滑有界的单连通区域,为光滑映射我们在函数类空间中研究的极小元的唯一性;这篇文章第二部分中我们将用另一种......

