低反力度跨声速压气机转子间隙流动及其控制的数值研究

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:douzixia
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
现代航空发动机的进一步发展对压气机负荷和效率提出了更高的要求,低反力度压气机作为一种能够保证高效流动及高增压比的新技术,对于改善航空发动机压缩系统性能具有重要意义。叶顶间隙流对压气机的总体性能和内部流动稳定性具有显著影响,但目前对低反力度压气机间隙流动结构的认识仍不完善,内部流动机理亟待探究。本文以课题组前期设计的某三级低反力度高负荷压气机的首级转子为研究对象,针对低反力度跨声速转子叶顶间隙流动的机理和控制问题展开详细的数值模拟研究。主要的研究内容和结论如下:首先,本文研究了叶顶间隙流对低反力度跨声速转子宏观特性的影响。由于间隙尺寸是决定叶顶间隙流最直接的几何参数,因而对不同间隙尺寸下的流场进行了全工况数值模拟。研究发现,间隙流是导致转子气动性能降低的主要原因,随着间隙尺寸的增大,转子的堵塞流量减小,总压比和效率在整个流量范围内均有降低,但稳定工作范围呈现先增大后减小的变化趋势。其次,为了完善对低反力度跨声速转子叶尖区域流动机理的认识,采用多通道非定常数值模拟方法深入考察了不同间隙尺寸下激波/泄漏涡干涉、泄漏涡非定常波动、预失速状态等微观特性的变化。结果表明,低反力度压气机的失速源位于叶尖区域,不同间隙尺寸下,转子的失速机制不同。小间隙尺寸下,激波/附面层干涉在吸力面-机匣角区形成的大范围堵塞是促使压气机失速的主要原因。而在大间隙尺寸下,激波/泄漏涡干涉作用导致了涡破碎的发生,并在叶尖区域形成跨通道的旋转扰动结构,涡破碎现象加剧了叶尖流场的恶化,最终引发压气机失速。在上述研究基础上,为有效抑制间隙流或泄漏涡的形成,从而提高压气机的气动性能,本文引入了弯叶片技术用于减小间隙流的影响效果。本文针对周向弯曲和弦法向弯曲两种弯曲形式开展了一系列参数化研究,通过对比分析原型和弯曲叶片的流场特性,得到了几何造型参数对流场结构和性能参数的影响规律。研究发现,较大幅度的负弯角和较低的弯高更有助于削弱主泄漏强度,从而减弱激波/泄漏涡干涉,降低叶尖区域的泄漏损失和激波损失。两种弯曲形式下转子的特性线和流场结构呈现不同的特点。与弦法向弯曲相比,周向弯曲可以在保证转子通流能力的同时,提高总压比和效率。此外,周向弯曲对主泄漏涡强度和激波位置的控制效果更明显,减弱吸力面角区低能流体堆积的作用也更强。因此,在低反力度跨声速转子的气动设计中,推荐使用周向反弯,可以在满足强度要求的前提下选择较大幅度的弯角和较低的弯高。最后,考虑到几何高度复杂的三维叶片可能存在颤振和强度问题,本文开展了周向槽机匣处理对低反力度转子间隙流动的控制研究。通过在一定范围内改变周向槽的位置、深度和覆盖范围生成了一系列周向槽构型,采用数值模拟的手段快速评估了不同构型的性能,详细分析了几何设计参数对叶尖流场的影响规律,得出了周向槽机匣处理在低反力度压气机背景下的设计准则。结果表明,当周向槽位于前40%轴向弦长范围内时,周向单槽可以在不损失效率的前提下扩大转子的稳定工作范围。槽深的变化仅在0%和10%轴向位置对失速裕度有显著影响,失速裕度的最大增幅达6%。前缘至30%轴向位置范围内槽深的增加不利于效率的提升;30%轴向位置至尾缘范围内,槽深对峰值效率的影响不明显。此外,周向多槽的布局方式既有效控制了叶尖泄漏涡的产生和发展,同时也缓解了叶尖区域的流动堵塞。周向槽破坏了间隙流动的形成机制,显著提升了转子的总体性能,延缓了由间隙流动引起的压气机失速。
其他文献
上证50ETF期权的正式上市交易标志着我国金融市场正式进入多元化投资和风险管理的新时代。期权具有高杠杆特征及做多做空机制,若使用不当,会加剧金融市场的波动,一直以来波动率是学界和业界关注的重要话题,也是市场中的重要风险源。资产定价理论表明:只要市场中存在风险源,投资者必然索取相应的风险溢价,进而对我国金融市场的资产定价及风险管理提出挑战。由于上证50ETF期权的推出时间较晚,鲜有相关研究,而期权市
传统的目标探测手段,受到入瞳口径、焦平面低温制冷的限制,难以实现小型化、便携化。多模光纤因可柔性传输和抗干扰强的特性,利用其传输成像可以有效解决这一问题。基于卷积神经网络的深度学习方法,可有效地将多模光纤形成的散斑图像重建出输入图像,相比传输矩阵、相位共轭、迭代算法等传统方法,更快捷、更能克服复杂的外界干扰。本文使用深度学习方法开展多模光纤图像重建研究。首先,针对多模光纤传像系统的调制传递函数研究
网络空间已成为人类生产生活的“第二类生存空间”,其中蕴含着大量的涉及国计民生的信息资产。为对关键目标信息资产进行摸底,实现企业网络基础设施的信息化建设,并从中寻找存在的安全隐患,进而保护关键目标的互联网资源,本文进行了关键目标互联网资源画像技术研究。其中关键目标是银行、能源、交通等关系到国计民生的单位,而关键目标互联网资源画像则是对关键目标互联网资源运行状态及互联网资源关联关系等进行直观刻画。本文
硅陀螺作为核心器件在航天航空和战术武器系统中得到重要应用。国外硅陀螺及其接口电路一直采用芯片集成方式,从而实现了硅陀螺的小体积、低功耗、低成本和批量化应用。近年来,我国在单轴硅陀螺接口电路研发方面取得突破,已经研制出单轴集成的接口电路芯片。实际应用中需求的绝大多数是三轴陀螺,因此三轴硅陀螺接口电路集成具有重要的研究意义。硅陀螺的三轴集成与单轴集成存在显著差别。三轴接口电路中的很多电路结构可以通过直
网络从层次上来看可以分为IP级网络、路由级网络、AS级网络,其中路由级网络起着承上启下的作用,路由网络的性能关乎数据传输效率和网络安全;路由网络是整个互联网的核心,认识路由网络是认识互联网、使用互联网、管理互联网、提高网络空间安全的重要步骤。它可以有效地提高通信速度,降低网络系统在通信中的负载,节约网络系统的资源,提高网络系统的平滑率,使网络系统发挥更大的经济效益。如果一个路由网络突然发生了致命的
借助纳米坐标测量机实现介观尺度的超精密测控是高端装备制造和半导体工业等精密工程中的重大需求,推动着纳米计量国际研究前沿迈向原子尺度、毫米以上测程和三维测量,促使超精密坐标测量技术成为了高端装备制造和精密计量领域的战略制高点之一,这对激光干涉测量技术提出了三自由度同步测量和测量精度突破纳米指向皮米量级的极限挑战。相比于传统的多光束三自由度激光干涉测量方法,单光束三自由度激光干涉测量方法具有系统架构简
介电液体中的电热对流主要关注流场、热场、电场及自由电荷之间相互作用所引发的具有独特流动现象与传热传质过程的复杂多场耦合问题,其涉及到流体力学、电化学、电动力学、传热学等多个领域,内部蕴含丰富的物理特性,且在许多重要领域如航空航天、制药、食品加工、电子工业等具有相当广阔的应用前景。由于电热对流数学模型的复杂性及其内部存在的丰富流态转变、失稳和分岔等现象,目前的相关研究工作还十分匮乏,且大部分都侧重于
随着航天工业的发展,近年来航天器的任务越来越复杂多样,而航天器也需要的多种附件完成不同的空间任务。航天器附件的大型化、轻质化、柔性化的发展趋势使得在考虑其相关动力学问题时,不能简单地将其作为刚性多体来考虑,因此对于这些柔性附件的动力学建模和运动控制研究具有重要意义。因此,本文针对航天器的大型桁架、机械臂等典型柔性附件进行了动力学建模,分析以及运动控制的研究,主要内容如下:1.基于连续介质力学理论,
软体执行单元因其具有无限自由,连续变形和强的环境适应性,具有广阔的应用前景。为了实现软体执行单元的功能比如较快爬行,柔顺抓取等,要求软体执行单元具有弯曲,收缩,伸展等连续变形能力的同时与目标表面间有较大的贴合力。本文进行了基于形状记忆合金(SMA)丝驱动的软体静电吸附单元的研究,将SMA丝嵌入硅胶中,制成软体单元,驱动其弯曲变形,具有体积质量小,输出位移大的优点;在软体单元与目标表面采用静电吸附方
随着对光与物质间相互作用认识的不断深入,以光学回音壁模式(WGM)谐振腔、飞秒光学频率梳(OFC)为代表的新型光子器件得到了广泛应用,使得光学传感﹑物质分析、医学诊断以及环境监测等领域中的一些精细变化(如微纳颗粒结合动力学过程、痕量气体理化性质改变等)得以以亚fm量级的光谱响应表征出来。然而,现有的通用光谱分析方法或受限于分光元件的调制精度与加工精度,或受限于等效滤波器的构造原理,其光谱分辨力无法