基于苝二酰亚胺非富勒烯太阳能电池受体材料的合成与光伏性能研究

来源 :湘潭大学 | 被引量 : 0次 | 上传用户:c1093682
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着全球能源结构的改变,市场对新能源材料及其器件的需求日益增长。有机太阳能电池(OSCs)作为取代传统能源的明星候选者,其光电转换效率低下等问题是发展过程中绊脚石。本论文以体异质结(BHJ)OSCs的光电转换机理及性能影响因素为基础,从调控活性层中受体材料的吸收光谱、前线轨道能级、分子构象、分子的聚集态和材料间的相互作用出发,设计并合成了一系列以苝二酰亚胺(PDI)为主体吸光结构和拉电子单元的受体分子。主要研究内容如下:1.设计并合成了四种以咔唑为富电子单元(D),苝二酰亚胺为第一缺电子结构单元(A1),2-(3-乙基-4-氧代噻唑烷-2-亚基)丙二腈/3-(二氰基亚甲基)靛酮为第二缺电子结构单元(A2)的A1-D-A2型不对称小分子受体RPC、FRPC、IPC、FIPC,并应用于OSCs器件。其中,FIPC存在更强的分子内电荷转移、更强的共轭性和平面性,促进了激子解离和电荷传输,并且可见光区光谱与PTB7-Th更为互补。基于PTB7-Th:FIPC的器件初步测试展现出较小的域尺寸,升高的LUMO能级、较好的形貌结构实现了最高为0.94 V的VOC、9.05 mA/cm2的JSC、38.6%的FF以及3.27%的PCE。2.设计并合成了以卟啉为间隔基,三苯胺为桥,PDI为端基的小分子受体TP-ZnP,其具有三维空间结构、较弱的分子间相互作用和分子聚集、较强的热稳定性、宽可见光谱吸收以及1.90 eV的光学带隙。使用与其可见光区光谱互补的PTB7-Th、0.5%DIO制备的OSC器件展现出最高为0.84 V的VOC、14.53 mA/cm2的JSC、62.7%的FF以及7.65%的PCE。3.设计并合成了苝二酰亚胺、3,3’-二氟-2,2’-联噻吩和卟啉为主链的两种三元共聚物P1和P2,研究了其热学、光学、电化学性质。研究结果表明P1和P2的分解温度均高于400℃,在400-700 nm波长范围内具有较强的吸收,P1和P2的HOMO能级分别为-5.80和-5.82 eV,LUMO能级分别在-3.89和-3.88 eV,电化学带隙为1.91和1.94 eV,在全聚合物OSCs中具有良好的应用前景。
其他文献
泡沫铝作为一种新型材料,具有诸多优异的性能,但自身刚度较低,不便于直接使用。研究者们由此开发出了泡沫铝夹芯结构。近二十年来,泡沫铝及其夹芯结构得到了飞速的发展与广泛的应用。在使用中,泡沫铝夹芯板有时会遭到撞击、爆炸冲击等动态荷载作用,所以对其抗冲击性能的研究是一个极其要紧的工作。本文以有限单元法为分析基础,结合碰撞过程中相关的理论知识,利用ANSYS/LS-DYNA计算机程序对泡沫铝夹芯曲板的动态
二氢吡咯二酮化合物不仅是构成许多天然产物和人工合成药物的基本结构单元,而且其衍生物具有独特的生物活性和药理活性。但是二氢吡咯二酮衍生物的制备步骤复杂,结构种类少等不足,使其在生产、生活等方面的实际应用价值并未大量发掘。因此,探索出绿色高效的制备路线是众多化学家研究的热点之一。而串联反应不仅仅可以高选择性地得到一些具有独特化学结构的物质,而且反应过程生成的中间体可继续进行原位反应,反应步骤少,资源利
二维材料是指厚度仅有单层或数层原子的晶体或非晶材料,其电子只在一个非纳米尺度(1-100nm)的二维空间内做自由运动。自从2004年二维石墨烯(Graphene)被安德烈·杰姆(Andre Geim)和克斯特亚·诺沃消洛夫(Konstantin Novoselov)等英国科学家首次使用机械剥离方法被成功分离以来,以石墨烯为代表的二维材料因其优异的电学、光学、力学、磁学、热学等性能成为研究者们关注的
不对称氢化(Asymmetric Hydrogenation)是一类高效的催化还原方法,可以用于高效地构建手性分子并具有广泛的应用范围和前景。通过氢气分子与含有碳碳双键(C=C)、碳氧双键(C=O)以及碳氮双键(C=N)等不饱和键的不对称加成反应,手性结构可被高效构建,这是一类高原子经济性和环境友好的合成方法。该类型的催化反应能快速、有效的构建手性结构并提高合成效率,对工业化合成应用具有举足轻重的
单晶硅(Silicon,Si)及其化合物是微机电系统(Micro-electromechanical Systems,MEMS)的主要器件材料,随着MEMS在不同领域中的广泛应用,Si微型构件的尺寸不断缩小到微/纳米尺度,由此带来的尺度效应使得Si表面的黏着力、摩擦力不断增大,从而严重制约了其在MEMS中的可靠运行。因此,对Si基材料表面进行减黏、减摩和抗磨性能改善迫在眉睫,纳米润滑薄膜技术成为解
本论文主要对Daphnezomine类型的虎皮楠生物碱Dapholdhamine B的核心ABC环系骨架展开了合成研究。虎皮楠生物碱是一类具有非常新颖骨架的生物碱,且部分天然产物被证实具有较好的生物活性。迄今为止,虎皮楠生物碱家族已有320多个成员。在过去的几十年内,国内外的合成化学家对虎皮楠生物碱先后进行了全合成研究,但仍旧只是对少部分类型的虎皮楠生物碱进行了研究工作,Daphnezomine类
腐蚀是金属材料最常见的失效形式之一。局部腐蚀具有腐蚀破坏快速、隐蔽性强、难以预测、控制难度大等特点,与全面腐蚀相比危害性更大,更易突发灾难性事故。因此,预测金属腐蚀形貌、研究金属局部腐蚀损伤演化过程及其规律并探究金属局部腐蚀机理具有重要的价值和意义。本文基于金属腐蚀机理和元胞自动机(Cellular Automata,简称CA)理论,分析了腐蚀环境下金属局部腐蚀中基本的物理化学过程,得到相应的物理
目的:观察lncRNA LINK-A在脑胶质瘤中的表达和临床意义,并探讨lncRNA LINK-A影响脑胶质瘤细胞增殖和侵袭的信号机制。方法:1.收集2014年至2016年河北医科大学附属第二医院神
脑机接口(brain-computer interface,BCI)是一种将人的意图转化为控制信号,去控制外部设备达到与外界交流目的通信系统。基于编码调制的视觉诱发电位(code modulation visual
过渡金属催化的不对称合成方法学是目前获得手性分子最主要的方法之一。手性配体是不对称催化合成领域的手性来源,设计和合成结构新颖的手性配体一直是该领域的研究热点。近几十年来,基于螺环骨架的手性配体逐渐兴起,在均相不对称氢化、不对称烯丙基取代等许多类型的不对称催化反应中表现出优异的反应活性以及立体选择性。一些手性螺环配体及其组成的催化剂为手性药物的工业化生产提供了高效环保的合成路线。本文采取先构建季碳中