论文部分内容阅读
循环矩阵是矩阵理论的一个重要组成部分,且日益成为应用数学领域中一个非常活跃和重要的研究方向。反对称反循环矩阵又是循环矩阵的一个重要组成部分。它具有许多特殊的性质和结构,因此很有必要对其进行研究,并探讨其特殊性质和特殊结构。例如:各种多项式表示形式、对角化、谱分解、非奇异性、特征值、特征多项式、极小多项式、逆阵、群逆及Moore—Penrose逆的各种快速算法等。本文主要研究内容如下:
首先给出了反对称反循环矩阵的定义并利用Vandermonde矩阵讨论了反对称反循环矩阵的准对角化问题;并由所得到的结果,获得了反对称反循环矩阵的一些相关性质,进而给出了一种简便的反对称反循环矩阵求逆的算法。其次,将反对称反循环矩阵进行了推广,得到了几种分块反对称反循环矩阵,并对其中的两种特殊分块的反对称反循环矩阵的性质进行了讨论。最后,在分块反对称反循环矩阵性质的基础上,给出了其特征值和特征多项式以及相似对角阵。
本文共分三个部分:
一:给出相关的预备知识,主要是循环矩阵研究的国内外现状和进展、文中用到的循环矩阵的基本概念、性质以及在矩阵理论和矩阵计算中经常用到基本运算工具。
二:给出了一个新的矩阵类型一反对称反循环矩阵的概念,并给出了该矩阵的一系列性质,以及利用Vandermonde矩阵将反对称反循环矩阵对角化,并给出反对称反循环矩阵求逆的方法以及逆矩阵的性质。
三:给出了两种分块不同的块反对称反循环矩阵的概念,并对他们的性质进行了研究,给出了相关的结论。