【摘 要】
:
氨基酸是一类结构丰富的可再生资源。随着生物技术的不断进步,氨基酸的生产出现了蓬勃发展的新局面,多种氨基酸,如赖氨酸等甚至出现产能过剩的现象。另一方面,高附加值聚氨基酸材料的合成却一直匮乏。因此,结合氨基酸的结构特点,发展经济有效的氨基酸来源单体聚合方法已经成为高分子化学研究中亟需解决的课题。我们课题组在前期的工作中,利用赖氨酸的结构特点,成功构筑了七元环状赖氨酸单体,通过开环聚合合成出抗菌性聚(ε
论文部分内容阅读
氨基酸是一类结构丰富的可再生资源。随着生物技术的不断进步,氨基酸的生产出现了蓬勃发展的新局面,多种氨基酸,如赖氨酸等甚至出现产能过剩的现象。另一方面,高附加值聚氨基酸材料的合成却一直匮乏。因此,结合氨基酸的结构特点,发展经济有效的氨基酸来源单体聚合方法已经成为高分子化学研究中亟需解决的课题。我们课题组在前期的工作中,利用赖氨酸的结构特点,成功构筑了七元环状赖氨酸单体,通过开环聚合合成出抗菌性聚(ε-赖氨酸),突破了抗菌性聚(ε-赖氨酸)只能采用发酵法合成的局限。本论文旨在前期工作基础上,进一步发展高效的催化体系及环状赖氨酸与己内酰胺单体的高效共聚,实现具有广谱抗菌性能的聚(ε-赖氨酸)及赖氨酸-己内酰胺共聚物的高效及规模化合成;同时,基于甲硫氨酸结构特点,发展新型环状单体,通过有机催化开环聚合构筑一系列功能化的聚酯酰胺材料。本论文取得的重要结果如下:1筛选了六种商业化催化剂,包括有机碱和无机碱,详细研究了六种碱下环状赖氨酸单体的开环聚合行为,其中NaH和t-BuP2最为有效。聚合机理研究表明,环状赖氨酸单体在碱的作用下脱质子是形成阴离子活性种的关键,证实了碱的强度对高效的开环聚合至关重要。另外,我们初步尝试了抗菌性聚(ε-赖氨酸)的规模化制备,获得了数均分子量最高可达10.0 kDa的聚(ε-赖氨酸)。2以赖氨酸为原料合成了二甲基保护的环状赖氨酸单体(DMCL),基于有机超强碱实现了二甲基保护的环状赖氨酸单体(DMCL)和己内酰胺(CL)的高效开环共聚合,获得了赖氨酸-己内酰胺共聚物。通过共聚物中侧链的二甲氨基高效的季铵化反应,制备了抗菌性赖氨酸-己内酰胺共聚物,其数均分子量最高可达77.4 kDa。这种抗菌性赖氨酸-己内酰胺共聚物不仅具有足够的物理机械性能,同时具有高效的抗菌性,含有25 mol%季铵盐基团的共聚物能够完全杀灭金黄色葡萄球菌(革兰氏阳性菌)和大肠杆菌(革兰氏阴性菌)。3设计并合成了一系列甲硫氨酸来源的吗啉-2,5-二酮单体,通过调控有机碱和硫脲(TU)双组分催化剂实现了吗啉-2,5-二酮单体的可控聚合。所得聚酯酰胺中侧链的硫醚基团通过“甲硫点击”反应得到具有不同功能基团的聚酯酰胺,进一步丰富了聚酯酰胺的结构。通过核磁氢谱(1H NMR)及碳谱核磁(13C NMR)和基质辅助激光解吸附离子化飞行时间质谱(MALDI-TOF MS)对甲硫氨酸来源的吗啉-2,5-二酮单体及其聚酯酰胺的结构进行了详细表征。差示扫描量热法(DSC)测试表明,所获得的聚酯酰胺具有可变的玻璃化转变温度。同时,通过热压的方式可以得到透明的聚酯酰胺薄膜。
其他文献
随着信息时代的到来,频繁的信息交互已经成为人们日常生活的一部分,也成为了现代政治、经济、军事等诸多领域正常运转的基石。正因如此,信息安全越来越被现代社会所重视。信息安全离不开密码学的发展。然而,随着量子计算技术不断取得突破,依赖于计算复杂度的现代密码学的安全性变得岌岌可危。在这一背景下,作为一种新颖的密钥分发方式——量子密钥分发(Quantum Key Distribution,QKD)日益受到学
随着我国进境粮食数量和规模的不断增加,粮食品质检验工作方面存在的问题日益突出。本文介绍了当前我国进境粮食品质检验工作的发展现状,系统分析了在进境粮食品质检验工作中存在的重视程度不够、法律法规标准更新不及时、监管人力资源不足、改革创新进展缓慢等诸多问题,据此提出相对应的应对解决措施建议。
随着煤炭需求量增加,导致煤炭开采不断向深部转移,深部复杂的地质环境势必造成煤炭开采面临更加严峻的挑战,其中巷道围岩稳定性已成为研究的焦点。注浆加固对围岩稳定性控制起到很好的治理效果,而围岩梯度破坏引起的裂隙不均匀特征,造成传统注浆材料由于颗粒大等问题不能满足注浆加固对围岩稳定性控制的要求;且深部环境更加复杂,面临富水和离子侵蚀环境,造成水泥基注浆材料出现力学性能明显下降等问题。为了解决上述难题,论
在“丝绸之路经济带”建设和依法治疆方略的目标要求下,目前新疆口岸经济法治化建设过程中暴露出一些新问题,如存在口岸地方立法不够完善、进出口监管水平有待提升、对外贸易促进与保障措施乏力等问题,阻碍了新疆口岸经济法治化建设进程。为此,应借助“丝绸之路经济带”建设、依法治疆方略与新疆口岸经济发展的耦合作用,建立“一基础多辅助”型地方立法体系,打造“阳光监管”模式,重视风险预防机制建设,创新对外贸易促进与保
液滴/气泡定向操纵在雾水收集、化学微反应和生物医疗检测等领域有广泛应用。然而,仿生人造界面浸润材料和利用外场激励实现液滴定向操纵策略均受限于其本征限制。例如,基于化学润湿梯度和结构梯度的被动式液滴运输受限于速度和体积范围;而基于电、磁、光和热场驱动的主动式液滴操纵技术受限于其本征缺陷。本文提出基于飞秒激光制备各向异性微结构的机械调谐液滴操纵技术,即通过机械拉伸和机械振动调控液滴和水下气泡行为。主要
蛋白赖氨酸乙酰化修饰在物种中广泛分布,参与蛋白质翻译、转录复制、新陈代谢、信号转导等多个重要的生物学过程,该修饰调控的分子机制是当前生物大分子修饰机理研究的热点问题。一方面,蛋白可以通过酶促或者非酶的化学反应将蛋白赖氨酸残基进行乙酰化修饰;另一方面,蛋白需要特异的赖氨酸去乙酰化酶(KDACs)对乙酰化修饰蛋白的功能进行可逆调控。目前,细菌中已确定功能的KDACs均与真核同源,包括Zn2+依赖型Rp
在数字经济时代,发展数字贸易对降低贸易成本、提高贸易效率、建设贸易强国、推动全球经济稳定发展具有重要意义。智慧海关在我国数字贸易中的应用有助于增强信息传输的有效性、管理的科学性规范性、业务运行的协同性,破除数字贸易壁垒,推动数字贸易发展。然而,目前智慧海关在我国数字贸易中的应用尚处于早期阶段,还存在各经济体在贸易规则上尚未达成共识、贸易链各参与方信息不对称、海关内设部门协同程度低、现有监管手段不适
表面增强拉曼光谱(Surface enhanced Raman spectroscopy,SERS)通过分子指纹信息实现高灵敏检测。在过去的数十年中,随着纳米科学和技术的发展,特别是纳米材料合成技术的飞速发展,给SERS带来日新月异的变化,特别是对SERS基底中的热点的关注和思考。研究人员致力于设计和构筑具有丰富热点的SERS基底,一大批相关的实验和理论也相继出现。但如何采用简单的方法,构筑出大量
超级电容器是一类具有超快充放电速度和超长循环寿命的电化学储能器件。但是实验室研究成果往往无法直接满足商业化超级电容器的实际性能需求,特别是,如何在提高电极质量负载的同时继续保持电极的良好性能成为一个关键。多孔碳作为超级电容器电极材料得到了广泛的应用,在高负载电极中进一步提升其性能,需要进一步对其孔隙率进行精确调控。鉴于电子传导性能变差和离子输运性能降低是阻碍高质量负载碳基电极实际应用的主要瓶颈,需
太赫兹科学技术作为一种新兴交叉学科领域,承接了宏观电子学和微观光子学。太赫兹波具有比毫米波高几个量级的频谱带宽和远超于X射线的穿透性,在超高速无线通讯、雷达安检和生物医学等领域具有极大的应用潜力,逐渐引起了研究人员的兴趣和关注。特别是二十一世纪以来,太赫兹相关的材料研究、功能器件和技术应用蓬勃发展,日新月异。在材料研究领域,各种体系的材料与太赫兹波的相互作用不断被揭示,尤其是利用太赫兹波研究关联电