【摘 要】
:
不同条件下光与相干介质间相互作用的研究一直是量子光学领域的研究热点之一该研究将有助于人们更好地了解和认识外场与物质互作用过程的微观机制。随着激光技术的不断发展,极端条件下的光场获取已成为可能,如超强的少周期超短脉冲。当此少周期超短脉冲与量子系统相互作用时又引发了许多新的物理现象,比如载波包络相位效应,因而给量子态操控带来了新的问题。与此同时,随着激光强度的增加,光场与相干介质相互作用时非线性效应的
论文部分内容阅读
不同条件下光与相干介质间相互作用的研究一直是量子光学领域的研究热点之一该研究将有助于人们更好地了解和认识外场与物质互作用过程的微观机制。随着激光技术的不断发展,极端条件下的光场获取已成为可能,如超强的少周期超短脉冲。当此少周期超短脉冲与量子系统相互作用时又引发了许多新的物理现象,比如载波包络相位效应,因而给量子态操控带来了新的问题。与此同时,随着激光强度的增加,光场与相干介质相互作用时非线性效应的影响也越来越显著。本文围绕不同极端驱动场作用下的相干介质响应展开研究,主要工作如下:(1)讨论了双色少周期超短脉冲实现布居的超快转移。建立了相应的模型,对布居演化进行数值模拟并给出了近似解析解。结果表明,在双色少周期超短脉冲(大于两个光学周期)驱动下,借助中间态可以实现布居向目标能级转移。同时,发现用延时的或同步的少周期超短脉冲在共振或远离共振时可实现有效的受激拉曼散射。有关少周期超短脉冲实现超快布居转移的理论研究结果将有助于拓展少周期超短脉冲在相干控制等领域的应用。此外,数值结果显示,当少周期超短脉冲宽度小于两个光学周期或者特定条件下时,在布居转移过程中将表现出显著的CEP效应。(2)研究了不同强驱动条件下两能级极性分子的响应。此部分采用非零对角元偶极矩阵的两能级模型分析偶极分子系统在受到几种不同驱动外场作用时系统的布居动力学过程,如单色周期场、线性场、抛物线型场及双曲函数场等。借用合流休恩方程给出了对应情况下适用于所有参数取值范围的精确解析解。此外,在解析求解的过程中并未采用旋波近似。(3)讨论了非线性克尔效应对纯化两能级原子态实现单光子水平共振荧光最佳压缩影响的相关问题。首先,论证了通过合理设计准共振腔的库环境来实现优化原子共振荧光压缩态的可行性及具体方法。然后在此基础上,讨论了在克尔介质中实现原子态纯化时受到非线性效应的影响。数值计算表明,负克尔系数的非线性效应在特定条件下将有助于光压缩的实现,因失相导致的压缩退化也受到了类似的影响。该结论将有助于将共振荧光最佳压缩方法推广到更多的应用系统中。关于相干介质在不同的驱动场作用下的性质研究是基本的重要的课题,我们的工作主要探讨了双色超短强场驱动条件下的布居转移,强场作用下的极性分子布居动力学,克尔效应对单光子水平共振荧光的影响等问题。在具体分析讨论中,采用的参数均为实验参数,因此相信我们的研究结果将能被实验证实,从而为相关研究领域及应用提供有益的参考。
其他文献
随着研究不断深入,无线传感器网络技术逐渐成熟并被应用到更多领域中,其工作环境、监测对象及信息日趋多样。为保证不同应用目标的顺利实现,无线传感器网络需提供必要的服务质量保障,质量保障机制成为研究者持续关注的重要议题。无线传感器网络服务质量在数据传输上主要关注时间性、可靠性;在感知器件确定的情况下,数据采集质量则主要受网络覆盖度及连通性影响,服务质量保障需要网络不同层次提供支持机制,机制实现依赖不同网
由于Ti Al合金具有优异的高温力学性能和较低的密度,可以在满足航空发动机性能要求的同时起到一定的减重效果,因此具有巨大的发展潜力。但是金属间化合物的本征脆性导致Ti Al合金的室温塑性较低,在加工过程极易发生开裂,严重阻碍了合金生产和应用的发展。随着航空发动机技术的不断发展,所需材料的服役温度进一步提高,高铌Ti Al合金成为当前的研究热点。然而,Nb元素的添加在提高Ti Al合金高温强度的同时
本文借助于非线性泛函分析和反应扩散方程中的隐函数定理、分歧理论、拓扑度理论、上下解方法、椭圆与抛物方程的比较原理、正则化理论、稳定性理论以及MATLAB数值模拟方法,具体研究了齐次Dirichlet边界条件下带有C-M反应函数的Lotka-Volterra捕食-食饵模型、齐次Neumann边值条件下Lengyel-Epstein反应扩散模型和带有Degn-Harrison反应项的化学模型.第一章中
复合材料具有高比强度、高比刚度、轻质量、耐腐蚀等特点,尤其在制品减重方面的优异表现,被广泛应用于航空、航天、船舶及汽车等领域,而先进的复合材料成型技术是实现高性能复合材料结构件制造的重要保证。复合材料氧化剂贮箱是固液混合火箭的关键结构件,目前主要以纤维缠绕/铺放成型含内衬的复合材料结构为主,然而含内衬贮箱的复合材料层与内衬外表面容易分层,导致制品性能下降,同时较重的内衬会大大增加火箭的重量。因此,
激光立体成形技术在小型零件高精度成形和大型构件高效率成形两方面已经取得了大量的成形实践。然而,效率与精度成反比是激光立体成形技术的一条基本工艺规律,这使得大型复杂构件的激光立体成形过程通常难以同时兼顾高效率和高精度。目前,将激光立体成形的高效增材近净成形与机械加工、电解加工等的近净减材加工相结合,进行组合成形制造已逐渐成为解决这一矛盾的重要途径。相比机械加工,电解加工技术具有工具阴极无损耗、材料去
随着同位素在地质学、生物医学、考古学、环境科学等学科中广泛应用,同位素的测量和分析成为人们日益关注的问题。如何使用方便、快捷、可靠、低耗的方法来对同位素进行测量,已经成为同位素应用中的重要研究课题。本文中,采用简并四波混频(Degenerate four-wave mixing, DFWM)非线性光谱技术对同位素进行测量分析。首先测量锂(Li)同位素比率,探索测量过程中最佳实验条件,并对DFWM过
Ti2AlNb基合金具有比一般钛合金更高的高温强度和高温蠕变抗力,比Ti-Al基合金更高的塑性、韧性及可加工性,已成为航空航天领域备受关注的新型轻质高温结构材料。然而,金属间化合物的本征脆性使得Ti2Al Nb基合金在先进航空发动机上应用时面临着韧性不足的技术难题。如何通过工艺技术创新提高断裂韧性是实现Ti2Al Nb基合金工程化应用过程中亟待解决的关键问题。西北工业大学与钢铁研究总院等合作单位一
在高温含氧环境中,涂层技术是保护碳/碳(C/C)复合材料不被氧化的有效手段。Mo Si2优异的高温抗氧化性能使其成为最佳涂层材料之一。然而Mo Si2涂层在低温易脆性开裂、防护温区窄、现有的制备技术可设计性差,严重限制其应用范围。本文以拓宽Mo Si2涂层的氧化防护温区为目的,采用高效能的超音速等离子喷涂技术(SAPS)作为涂层制备方法,系统研究了制备工艺、愈合相种类和梯度结构设计对Mo Si2涂
陕西省府谷县老高川乡的王大夫梁剖面堪称陕北“三趾马红土”的代表性剖面,在同一地点采集到3个不同层位的三趾马动物群化石数千件,材料丰富、保存较为完好。是中国晚中新世-早上新世地史时期非常重要的化石宝库,也是这一时期地层学、化石埋藏学以及古生态学的一个重要研究窗口。作为新生代地层中最重要的化石物种之一,三趾马类(Hipparionine)因其标准化石的属性对生物演化、地层学、古生态学和古地理学等有着重
C/C复合材料作为空天飞行器及其动力系统中不可或缺的战略性材料,具有优异的高温性能,是一种极具应用前景的高温结构材料。而LAS玻璃陶瓷作为一种介电性能独特的功能型高温材料,在高温吸波方面可发挥重要作用,但由于其自身固有的低强度和高脆性,加工性极差,难以实现大尺寸、复杂构件的成型,致使其实际应用受到极大的限制。实现C/C复合材料与LAS玻璃陶瓷的可靠连接,可充分发挥二者的各自优势,从而达到结构与功能