论文部分内容阅读
大规模低轨(Low Earth Orbit,LEO)宽带卫星网络通过提高发射卫星数量来降低对于单颗卫星的能力要求。借助星间链路组网,能够突破地理位置的局限实现全球不间断信号覆盖,为全球用户提供大宽带、低延时、无缝连接的网络服务。大规模LEO宽带卫星网络与地面通信网络系统相兼容,是天地一体化网络的重要组成部分,迅速发展为世界各国争相研究的重点。路由作为网络通信的关键技术,影响着信息的传递效率和网络的服务质量。在具有成百上千个节点的大规模LEO宽带卫星网络中,卫星无时不刻的高速移动导致拓扑的频繁变化。同时,卫星载荷能力有限导致其无法进行大容量存储和大规模实时计算,使得大规模LEO宽带卫星网络在路由方面还存在一些亟待解决的问题。对此,本文针对大规模单层LEO极轨道宽带卫星网络路由集中开展了研究,包括多径单播路由,动态单播路由以及组播路由。本文的主要研究内容和贡献如下:1、提出了基于无关多径(Node Disjoint-based Multipath,NDM)的单播路由算法。针对空间环境复杂多样,传统静态路由无法应对因流量分布不均、网络拥塞和节点故障造成时延和丢包增大、甚至数据不可达的问题,为此本文开展了无关多径的单播路由算法研究。该算法借助卫星网络的规则性,通过分析源节点和目的节点在网络运行过程中跨越极区周期性变化,设计了最多三条无关路径,避免重新路由带来的时延,提升了系统鲁棒性。具体来说,本文结合备选多径和并行多径的综合优势,设定三条路径的优先级:将传播距离最短的路径作为主路径,剩余两条作为备份路径。这样主路径能够在无拥塞状态下进行高效快速的数据传输;在轻度拥塞时,系统自适应地启动一条备份路径与主路径并行传输;在重度拥塞时,系统中断主路径,启用所有备份路径进行数据传输以保证数据完整可靠。仿真结果表明,NDM算法同离散时间动态虚拟拓扑路由(Discrete-Time Dynamic Virtual Topology Routing,DT-DVTR)算法、显式负载均衡(Explicit Load Balancing,ELB)路由算法相比,在面临不同程度的网络拥塞时,NDM算法均取得更低的传输时延、丢包率和更高的吞吐量。这种优势在拥塞非常严重的情况下更加明显。因此,该算法有效改善了大规模单层LEO极轨道宽带卫星网络的传输效率、自适应调整能力和故障容错能力。2、提出了最小动态成本(Minimal Dynamic Cost,MDC)单播路由算法。该算法旨在解决因动态单播路由在大规模LEO宽带卫星网络路由计算和更新带来的大量资源占用以及链路拥塞或节点故障造成的高时延问题。该算法首先将数据从卫星源点到目的节点路径上所消耗的传播时延、排队时延、处理时延转化为路径成本、等待成本和处理成本,之后将总成本最低的路径作为主路径,以保证最快速的网络通信。为了尽可能避免数据丢包的发生,算法采用M/M/1/k模型来设定丢包预期,从而计算出单颗卫星数据缓存队列的最大阈值,并将超过阈值的路径排除在外,以确保路径更加可靠。在进行路径探测之前,算法通过判断源节点和目的节点的相对位置,设定最小跳数洪泛区域,从而缩短数据洪泛时间,节约有限的网络资源。仿真结果表明,以北京为源节点,在与香港、台湾的近程通信以及与柏林、华盛顿的远程通信场景中,MDC算法在时延方面都取得了优于地面网络进行数据通信的表现。在与动态源路由协议(Dynamic Source Rrouting,DSR)算法、辅助定位按需路由(Location-Assisted On-demand Routing,LAOR)算法进行比较时,MDC算法在无拥塞或不同程度拥塞状态下均取得了更低的时延和丢包率,满足用户对于低时延和数据完整的要求,最大程度实现数据的高效传输和更高质量的网络服务。3、提出了基于分簇的组播路由(Cluster-based Multicast routing,CMR)算法。针对大规模LEO宽带卫星网络拓扑时变带来的组播树代价高、以及现存路由算法链路共享性差、组播路径绕远引起网络资源浪费的问题,提出了基于分簇的组播路由算法。该算法将卫星网络转化为相对稳定的曼哈顿模型,通过对组成员位置的讨论将网络划分为两簇。每簇选取一颗卫星作为簇头,将其作为组播树的根节点,以缓解组播源点的压力。另外在组播树构建过程中,设定四种优先级,这样可以在保证总跳数尽可能低的情况下,增加共享节点的数量,减少不必要的路径绕远,提高组播树的共享率。仿真结果表明,CMR算法与核心群合并共享树(Core-cluster Combination-based Shared Tree,CCST)算法、快速迭代组播(Fast Iterative Multicast,FIM)算法、经典多播路由算法(Multicast Routing Algorithm,MRA)相比,该算法兼顾了组播树总跳数和中转节点数,从而取得较低的组播树生成开销,避免单点故障拥塞,大幅改善宽带利用率和传输效率,提高组播流畅度和网络稳定性,最终实现全球范围内组播源点到成员节点数据的实时传输。