论文部分内容阅读
本学位论文研究求解不等式约束极大极小(Minimax)问题的广义梯度投影和QP-free算法,主要工作如下: 第一,借鉴广义梯度投影算法的思想,基于一个新工作集,构造了一个求解不等式约束Minimax问题初始点可行的广义梯度投影算法.在每一次迭代中,可行下降方向由一个基于新工作集的广义投影显式公式产生,且新工作集的构造方式可保证算法若干次迭代后,投影矩阵变简单,简化了计算.在适当的假设条件下,算法具有全局收敛性和强收敛性. 第二,寻找可行初始点及求解逆矩阵都会增加算法的计算量,为此,第四章借鉴QP-free类算法序列线性方程组系数矩阵的构造技术,结合拟强次可行思想,提出了一个初始点任意的QP-free算法.在每一次迭代中,可行下降方向由两个同系数线性方程组的解构成.算法若干次迭代后,系数矩阵右下角元素为零,方程组系数矩阵变得稀疏,简化了系数矩阵的结构,大大减少了计算量.线搜索采用拟强次可行算法的搜索方式,使得迭代点列的可行性不断增加.在适当的假设条件下,算法具有全局收敛性和强收敛性, 最后,对所构建的算法进行了初步的数值试验,以验证算法的有效性。