广义Sylvester方程的误差估计

来源 :东北师范大学 | 被引量 : 0次 | 上传用户:motombo555
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文致力于广义Sylvester方程的误差估计。使用了奇异值分解(SVD)计算向后误差,基于蒙特卡罗模拟的统计条件数估计(SCE)计算条件数向量。数值试验比较了基于小样本方法的条件数和传统的基于分离概念的条件数。结果表明估计的界是有效的,并且估计所需的计算量只需O(m2+n2)。  
其他文献
泛函微分与泛函方程是由泛函微分方程与泛函方程耦合而成的一类混合问题,在众多科学与工程领域有着广泛应用,其理论与数值方法的研究具有毋庸置疑的重要性.由于问题的复杂性,
本文主要是针对在独立观察数据场合下变系数模型中当一维回归变量X与误差项相关时,采用B样条两阶段最小二乘方法来对函数系数进行估计,并讨论它的大样本性质.  本文首先简要
本文主要讨论了线性算子动力系统,并给出了若干结果.其研究内容主要涉及四个方面:  其一,我们研究了在实或复的标量域上可分H ilb e rt空间上子空间圆盘循环算子,给出了圆盘循
铁磁流体是由纳米级的磁性固体颗粒、承载液以及表面活性剂混合而成的一种稳定的胶状液体,它在磁场存在时会被强烈极化。电磁流体是指某些导电流体如等离子体、液态金属等,它
本文考虑某些广义Camassa-Holm方程与Camassa-Holm方程组初值问题强解的持久性与唯一延拓性.持久性指若初值与初值的导数指数衰减,则方程的解及其导数以后都指数衰减,唯一延