论文部分内容阅读
本文的主要研究对象是算子权移位(以单射,稠值域算子作为权),共分四部分.
第一部分介绍基本概念,问题的背景、提出和前人的工作.
第二部分中,证明了每个算子权移位(以单射,稠值域算子作为权S~{Wk}都酉等价于一个正权的算子权移位T~{Vk};进一步,相同标号的权Vk与|Wk|是酉等价的(这里|T|Δ=(T*T)1/2,T∈B(H)).
第三部分中,证明了每个算子权移位(以单射,稠值域算子作为权)必相似于一个不可约算子;并在算子权移位情形给出了一些可约算子相似于不可约算子的例子,其中包含紧算子和Cp类算子的例子.
第四部分中,分别给出了在有限重和无穷重时,压缩的算子权移位(以可逆算子作为权)的Cαβ分类的充要条件;并给出例子说明条件不能进一步简化.