论文部分内容阅读
HE-AAC是一种保证在高音质情况下压缩率很高的音频编码,它具有多声道、多采样率、高压缩比、高音质等特点,可以比AAC的编码效率提高至少30%,在48 Kb/s的码率下就可提供高品质立体声音频,已被全球数字广播协会和3GPP组织采纳。本文以HE-AAC音频解码器为研究对象,在考虑实时性、面积等约束条件下,研究HE-AAC解码器的优化方法,设计HE-AAC解码器FPGA原型芯片,研究HE-AAC原型芯片的验证方法。(1).研究HE-AAC解码算法。采用适于硬件实现的方法化简复杂度较高的变换编码算法IMDCT和子带编码的正交镜像滤波(QMF)算法,将2048点的IMDCT转化为256点和64点的IFFT变换;将1024点的QMF变换转化为64点的DCT-IV变换,乘法次数减少8.59%,加法次数减少10.41%;将DCT-IV变换转换为易于实现的FFT变换,降低了硬件设计的难度。(2).优化HE-AAC解码器系统架构。以面积优化为主要目标,兼顾解码速度。采用总体串行,局部流水的方法,设计系统架构。在Huffman解码模块、反量化模块之间,以及时域噪声整形模块(TNS)与IMDCT模块之间设计流水线,以尽量少的资源消耗,保证解码效率。使用了done-start,全流水控制,以及声道间流水控制三种不同接口控制逻辑保证架构的有效实现。(3).优化HE-AAC原型芯片硬件电路。使用并行化技术优化SBR解码器中的Huffman解码模块,分析Huffman码表的前缀编码特性,用组合逻辑实现码表的索引,节省存储器资源,采用首0电路来简化硬件的设计,减少了逻辑资源。对IMDCT模块数据做预处理,转化为IFFT优化算法,使用优化的IFFT模块来实现电路逻辑,提高模块的处理速度。在AQMF以及SQMF滤波器的设计中,使用共享设计技术,采用共享DCT-IV子模块的的方式,实现资源共享,比不采用资源共享的设计逻辑单元减少29.4%,存储器资源减少33.3%,寄存器资源减少27.8%。在格式器的设计上,采用两个桶式移位寄存器乒乓移位取码流数据,减少码流解析过程的取数时间,提高码流解析的效率。