论文部分内容阅读
两类奇异分数阶微分方程积分边值问题解的存在性
【机 构】
:
中国矿业大学
【出 处】
:
中国矿业大学
【发表日期】
:
2018年期
其他文献
本文对集值映射的相依导数及其在参数向量最优化中的应用进行了研究。文章引入两种集值映射G和G。这两种集值映射可分别作为MVVI和MWVVI的间隙函数。实际上,-G和-G正好分别是
本文对小初值条件下多波速的非线性波动方程组柯西问题以及具有星形障碍非线性波动方程外问题经典解的生命跨度进行了研究。文章将推广Klainerman-Sideris 中的关于多波速波
本文讨论了广义极大算子, Littlewood-Paley算子在Orlicz-Campanato空间中的一些有界性质。文章分为三个部分: 第一章在Campanato空间和齐型空间的基础上定义了齐型Orlicz-C
由于混沌系统所固有的输出对初值的敏感依赖性以及混沌现象的复杂性,使得混沌控制和同步的研究非常具有挑战性,也使得这一领域的研究和发展成为当代非线性科学的一个热点。近十
奇异微分方程初、边值问题的研究近年来获得了很大程度的发展,奇异型微分方程是近十年来十分活跃的微分方程理论的重要分支,目前已经得到了很多不同条件下解的存在性结果,例
在本文中,笔者对无穷维动力系统的发展历史进行了回顾,对这一热门领域近十年的研究现状进行了综述。在此基础上,考虑了如下两个问题。 本文将文献[19]中讨论的情形:区域Ω R,g(
本学位论文致力于研究进行多段分红的古典风险模型的破产理论,主要研究了分三段分红的古典风险模型的Gerber-Shiu期望折扣罚金函数(以下我们简称Gerbei-Shiu函数)和分n+1段进
近代物理学和应用数学的发展要求分析和控制客观现象的数学能力向着富有全局性的高,精水平发展,从而使非线性分析成果不断积累,逐步形成了现代分析数学的一个重要的分支学科一非