【摘 要】
:
对船舶发动机燃烧室的温度场进行二维测量,对于改善发动机的燃烧效率、提高使用寿命以及实现节能减排具有重要意义。针对非接触、高时空分辨率等测量需求,本文基于可调谐半导体激光吸收光谱(TDLAS)技术,结合卷积神经网络(CNN)算法,开发了一套二维温度场测量系统,旨在用于发动机燃烧室的燃烧温度场的二维重建。第一,发展了一种基于CNN的二维重建算法。首先对水蒸气的吸收谱线进行优选,确定H2O在6807.8
论文部分内容阅读
对船舶发动机燃烧室的温度场进行二维测量,对于改善发动机的燃烧效率、提高使用寿命以及实现节能减排具有重要意义。针对非接触、高时空分辨率等测量需求,本文基于可调谐半导体激光吸收光谱(TDLAS)技术,结合卷积神经网络(CNN)算法,开发了一套二维温度场测量系统,旨在用于发动机燃烧室的燃烧温度场的二维重建。第一,发展了一种基于CNN的二维重建算法。首先对水蒸气的吸收谱线进行优选,确定H2O在6807.83cm-1和7185.6cm-1的吸收谱线作为测温谱线对。随后研究了燃烧场的正向测量模型,通过数值仿真分别对典型的对称单峰温度场和非均匀双峰温度场进行了模拟获取训练集和测试集,由此建立CNN模型。最后通过数值仿真的方式评价了CNN算法的重建效果,并与BP神经网络算法以及Tikhonov正则化算法进行对比,三者的平均重建误差分别为1.93%、6.71%和5.07%。第二,集成了基于TDLAS的燃烧场的二维温度测量系统。首先基于直接吸收光谱技术,集成了一套燃烧温度场的二维测量系统,包括主机和测量工装两部分。主机中利用数据采集卡输出两路锯齿波使得1391nm和1468nm的DFB激光器以时分复用的方式进行扫描,将两个波长的激光合束后再分成14路,通过设计制造的测量工装形成5×9正交光路覆盖整个燃烧场,经燃烧产物H2O吸收后的光信号被14个光电探测器接收后送入数据采集卡采集,编写了数据采集和处理程序,实现燃烧场的温度二维分布重建。第三,验证了二维温度场测量系统的性能。首先在实验室环境下,对蜡烛外焰的温度场进行二维重建。结果表明,重建的结果与剪切干涉法和热电偶的测量结果相吻合,证明了该方法适用于非均匀温度场的测量。然后将该系统应用到柴油发动机中进行现场测试,但由于现场是一个高温、高压、多相流(气体、油滴和碳烟混合)的恶劣环境,导致测量光路出现较大幅度的波动,而无法进行预期测量,因此总结这次现场实验出现的问题和不足,为后续对实验系统的改进提供了帮助,通过提高整个实验系统的稳定性,以实现柴油发动机燃烧室出口温度场的二维重建。
其他文献
最近,耦合神经网络的同步等动力学行为受到了学界广泛关注。在研究耦合神经网络同步现象过程中系统解的收敛速度是一个重要但很难被准确估计的指标。因此,能够准确提供系统解收敛速度的衰减同步逐渐成为研究热点,同时,值得注意的是在现有的可以查到的相关文献中,耦合反应扩散神经网络的衰减同步还没有被考虑过。因此本文研究了多权重的状态耦合以及空间扩散耦合的反应扩散神经网络的衰减同步。接着,本文以现有的衰减同步和H∞
多层多道焊接方式常用于航空航天和船舶制造等工业领域里中厚板工件的焊接,是一种非常重要的连接工艺方法。而基于激光视觉传感器的机器人智能化焊缝跟踪方式以其价格低廉、抗干扰能力强和精度高等巨大优势成为应用最广的方法。然而,在进行实际焊缝跟踪时,利用视觉传感器获取的焊接图像不可避免地会受到强反射、飞溅和电弧噪声的污染导致无法保证焊接的稳定性和精确性。因此,对基于激光视觉的多层多道焊缝跟踪进行研究具有重要意
在科学研究和工程技术领域,优化问题无处不在,但这类问题往往带有复杂的约束条件使搜索过程复杂化,加大了解决问题的难度。在过去的几十年里,进化算法被广泛应用于求解优化问题。然而,单纯只用进化算法来解决约束优化问题是不准确的,因为它们不能直接减少约束问题的约束偏移。因此,对于约束优化问题,如何能够设计出有效处理约束且能找到最优解的算法即为本文的研究重点。本文主要从进化计算中约束处理技术的角度出发,结合有
近几十年来,多智能体系统的分布式协同控制引起了越来越多研究者的关注,其研究方向涉及传感器网络、编队控制、一致性问题、航天器姿态跟踪控制、分布式优化计算和控制工程等各个领域。一致性问题是多智能体分布式协同控制的基本问题,其目标是指一组智能体基于局部交互规则在一定的物理量上达成一致。在现有的研究基础上,本文研究了二阶多智能体系统的一致性问题,主要从以下两个方面展开研究:在实际的多智能体系统中,由于智能
随着科技的迅猛发展,许多工程应用都需要大量的决策变量来解决问题,这种大规模问题的优化将对现有的优化算法提出挑战。由于决策变量的数量较大,所以问题的搜索空间也是巨大的,甚至是无限的,这就使得问题难以入手求解。此外,在这巨大的探索空间中,必然存在着许多伪全局最优值,这些值将影响算法并使其陷入局部最优,从而失去了搜索全局最优的机会。针对大规模问题的优化,通常使用两种优化技术:一是基于分解技术的协同优化框
神经网络的发展和大型数据集的增多,以及计算机硬件运算能力的提升,使得基于深度学习的技术在单模态(图像、文字、语音)已经取得的巨大的发展和应用。但是,多模态理解和交互等人类高级认知和推理功能还是很弱。针对这个问题,本文研究多模态交互领域一个极其重要的研究课题——视觉问答(VAQ)。视觉问答涉及图像和文本两个模态的信息,由于卷积神经网络(CNN)和循环神经网络(RNN)分别在图像和文本上的突出表现,许
随着汽车自动避障技术和服务机器人的逐渐发展,路径规划已经成为了移动机器人技术领域的热点问题。作为人工智能领域的深度强化学习由于不需要人工标记和不需要依赖先验知识的优势,目前多个领域已经结合实际应用对其进行了研究开发,同样在机器人路径规划任务中也有该方向的研究。本文使用单目相机作为机器人的感知手段,研究基于深度强化学习的室内自主避障问题。首先,在编码器-解码器网络结构的基础上,采用监督训练的方式,提
随着机械制造技术的飞速发展,高速电主轴成为了当今数控机床的核心部件,对其性能的要求也越来越高。电主轴是否具有优良的动态特性成为了确保机床加工精度高低的必要条件。轴承受预紧力的作用影响其接触刚度,高速时转速的变化导致轴承摩擦热的产生影响了接触变形进一步影响接触刚度。轴承作为电主轴的支撑部件其刚度又决定着电主轴的动态特性。本文以赫兹接触理论、摩擦理论、传热学、转子动力学理论为基础,分析多工况条件下的电
随着互联网的快速发展,网上产生了大量的产品评论,这些产品评论中往往蕴涵着许多有价值的信息,通过分析在线产品评论的情感倾向可以为用户和商家的决策提供支持。目前,互联网文本评论的情感分析已经成为文本挖掘的热门领域,基于神经网络的情感分析方法虽然克服了机器学习方法存在的特征提取困难的问题,但是神经网络仍然存在无法感知不同单词的重要程度、无法学习句子的内部结构和无法利用单词的位置信息等问题。同时,产品评论
随着科技的进步以及工业和制造业的快速发展,机器人逐渐被人们熟知并扮演越来越重要的角色。近年来,移动机器人以结构简单、易于控制、适合二次开发等优势成为研究热点。而在移动机器人领域的众多研究方向中,避障以及安全性研究是其中非常基础与重要的内容。本文以移动机器人为研究对象,对移动机器人在多种障碍物环境中的避障性能以及安全性、实用性问题展开深入研究,并以Turtle Bot3机器人为实验平台,利用ROS(