解磷真菌Penicillium oxalicum溶解难溶性磷酸盐的代谢机制研究

来源 :湘潭大学 | 被引量 : 0次 | 上传用户:yaoye_1108
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
磷是动植物生长发育的关键营养元素。我国土壤中总磷含量丰富,约占土壤总质量的0.1~0.15%,然而大部分以难溶性磷酸盐的形式存在,生物可利用性磷含量较低,约为10~20 mg/kg,如何持续、高效改善土壤难溶性磷成为目前研究热点与难点。解磷微生物是土壤中可溶解难溶性磷化合物,增加生物可利用性磷含量的生物类群,可通过分泌有机酸来实现难溶性无机磷化合物溶解,但已有的研究内容主要集中在有机酸类别分析及效果评价,关于解磷微生物在解磷过程中的胞内代谢行为及其基因调控机制至今仍未阐明。本研究通过筛选高效解磷真菌,检测其对常见难溶性磷酸盐的溶解特性,定性分析解磷过程中有机酸的种类与规律,并结合胞内代谢组学和特征解磷基因的响应变化,综合分析难溶性磷化合物影响解磷真菌胞外产酸特性及胞内代谢途径,进而从代谢角度阐述解磷微生物的解磷机制。具体结果研究如下:1、从湖南省岳阳市道仁矶化工厂周边土壤表层筛选到一株高效解磷真菌PSF-4,其在磷酸钙和磷酸铁中最高耐受浓度分别为50 g/L和10 g/L。通过对PSF-4菌体DNA进行ITS测序分析,确定PSF-4属于草酸青霉菌属(Penicilliun oxalicum MK720103)。对培养的实验条件进行优化,发现PSF-4在接种量为107/m L、温度为28℃、摇床转速为150 rpm时,对Ca3(PO42和Fe PO4的最大溶磷量为2270.17 mg/L和216.81 mg/L。2、对两种难溶性磷酸盐培养基中有机酸的动态变化进行定性定量分析,色谱结果显示,溶解Ca3(PO42的有机酸种类较为丰富,主要成分为草酸、苹果酸、甲酸等,有机酸结构多为一元酸与二元酸;溶解Fe PO4的有机酸含量较大,主要成分为葡萄糖酸与柠檬酸。第5天时两组有机酸浓度达到最大值,分别为1556.57mg/L与371.18 mg/L,Fe PO4实验组有机酸浓度约为Ca3(PO42的4倍,并且有机酸结构多为一元酸与三元酸;7天内,随着上清液可溶性磷含量增加,两个处理组中二元酸与三元酸所占比例逐渐增加;同时设置不添加PSF-4对照实验,发现只添加最大浓度有机酸时,并不能使两种难溶性磷酸盐在2天内溶解,当添加H+时,磷酸钙快速溶解,同时溶解磷酸铁量也快速增加。实验结果表明PSF-4是通过胞外分泌有机酸,同时降低培养基p H值的协同作用,实现难溶性磷酸盐溶解和可溶性磷释放。3、研究了PSF-4胞内葡萄糖酸代谢相关的吡咯并喹啉醌合酶(pqq C)和葡萄糖酸脱氢酶(gcd)两个关键功能基因在两种难溶性磷酸盐和可溶性磷(KH2PO4)条件下响应表达特征。实时荧光定量PCR检测结果表明,pqq C基因的转录水平为Fe PO4最大,是Ca3(PO42的1.96倍;gcd的基因转录水平三组分别为2.4×106、2.1×106、1.5×106。这两个基因的表达水平与葡萄糖酸产生和分解变化趋势一致,pqq C主要参与葡糖糖酸分泌,Ca3(PO42组中葡萄糖酸浓度较低但gcd表达水平高,表明gcd参与葡萄糖酸产生与分解,大量葡萄糖酸在胞内受gcd调控分解产生ATP供PSF-4代谢活动。4、通过非靶向代谢组学鉴定真菌PSF-4胞内代谢产物,Ca3(PO42、Fe PO4、KH2PO4三个处理组共筛到73种显著性差异代谢物,包括磷酸盐类、有机酸类、糖类、核苷酸类等。对比可溶性KH2PO4,难溶性磷酸盐的加入显著增强如三羧酸循环(TCA)、糖代谢等代谢途径,从而导致胞内葡萄糖酸、草酸、柠檬酸等有机酸的合成,并释放进入培养基中,实现难溶性磷酸盐的降解;难溶性磷酸盐降低胞内乙醛酸循环强度,增强部分氨基酸类代谢、核苷酸类代谢、脂肪酸代谢等与细胞增殖类代谢反应,提高微生物生长速率。胞内代谢实验结果表明,难溶性磷酸盐加入会刺激PSF-4胞内能量代谢和物质代谢,导致生物量增加,同时促进细胞壁磷脂、蛋白质等合成类代谢途径,抵抗金属离子带来的生物毒性,最终影响PSF-4在各实验处理组中有机酸分泌的差异性,实现难溶性磷酸盐的降解及菌体生长。
其他文献
细菌纤维素(BC)作为一种自然界含量丰富,对环境友好的天然纳米纤维材料,已经引起了各领域学者的关注。BC是通过细菌分解D-葡萄糖产生的一系列连续宽度为50-80nm、厚度为3-8nm的
明代江南在社会经济、文化等方面都取得辉煌的成就,文人追求山水田园之乐的园林营造在这个时期也随之达到极盛。《园冶》相地篇中乡村园林有着不同于其他园林的景观特征。本
中间相沥青炭微球(Mesocarbon Microbeads,MCMBs)是一种新型炭材料,具有独特的结构、良好的化学稳定性、高的导电性以及导热性,是制备高性能炭材料的优质前躯体,在诸多领域有
随着国家基础建设的大力发展,跨海大桥等大型工程也得到迅速发展,大跨径的桥梁对基础结构的要求也更高,各类大直径桩基础在一座座大桥的建设工程中发挥了重要作用。海洋环境
随着智能化技术的不断发展,“智能化+配电网”催生出了柔性负荷调度这类新型智能化用电应用场景,对用户而言,通过管理、调控和转移用电负荷,在满足用户舒适度的前提下,可以节
续航里程长和充电时间短的高性能可充电电池对于新能源汽车行业的高速发展有着重要意义。硅基材料的理论容量极高,可以极大地满足新能源汽车行业的发展需求。本课题以AHFS和A
氮化镓(GaN)作为一种代表性的宽禁带半导体材料,因其优异的光电性能和稳定性,十分适合制备光电子器件和微波射频器件,在照明与显示、5G通信、高频高功率光电设备等领域都有着
中国经济正由高速增长阶段转向高质量发展阶段,高质量发展需要相应的指标、标准和绩效评价体系。生态福利绩效全面地从资源环境角度体现经济发展的质量,是社会、经济、生态三
用过渡金属化合物材料替代贵金属催化剂,对于实现切实可行的分解水制氢具有广阔的应用前景。开发低成本,高效和耐用的HER催化剂仍然面临巨大的挑战。本文依据电催化剂材料性
组合梁,如钢梁-混凝土组合梁等,由于其良好的力学性能被广泛应用于建筑、桥梁等工程领域中。目前主要采用传统剪力连接件进行组合梁子梁间的连接,然而由于连接形式的限制,剪