【摘 要】
:
随着互联网时代的来临,大数据、云计算、人工智能等各种新型网络应用逐渐走入人们的生活。数据通信流量随之爆炸式增长。同时人们对网络的速率,带宽,时延和成本等的要求越来越高。传统的电互连方式,由于其无法逾越的“电子瓶颈”,限制了网络速率和带宽的进一步提高,已经无法满足当前网络大带宽,高速率的需求。以光互连技术为核心的信息交换方式以其大带宽,高速率,低时延的性能优势,能够克服传统电互连网络的速率和带宽局限
论文部分内容阅读
随着互联网时代的来临,大数据、云计算、人工智能等各种新型网络应用逐渐走入人们的生活。数据通信流量随之爆炸式增长。同时人们对网络的速率,带宽,时延和成本等的要求越来越高。传统的电互连方式,由于其无法逾越的“电子瓶颈”,限制了网络速率和带宽的进一步提高,已经无法满足当前网络大带宽,高速率的需求。以光互连技术为核心的信息交换方式以其大带宽,高速率,低时延的性能优势,能够克服传统电互连网络的速率和带宽局限性,成为人们追求的网络发展方向。其中最受关注的一项技术是片上集成全光互连技术。片上集成全光互连网络可以大大降低网络成本,功耗,提高可靠性等。特别是基于硅基光电子平台的片上光互连网络,其制作工艺与当前微电子半导体领域成熟的CMOS工艺兼容,前景尤为广阔,有望成为突破当前通信网络瓶颈的技术。然而,硅材料是一种间接带隙材料,基于硅材料的发光光源效率极低,约为1%。此外,如果大规模应用于通信网络中,片上光互连网络必将对组网成本非常敏感。因此,高效率,低成本的片上互连光源目前是制约硅基片上光互连网络的主要瓶颈。研制面向硅基片上光互连网络的高效率,低成本光源具有重大意义。目前发光效率最高并已商用化的光源是以三五族半导体材料为主导的激光光源。最接近商业实用化的硅基片上光互连网络是基于硅基三五族半导体混合集成光子芯片的网络。基于目前的片上光互连技术研究现状,本论文主要围绕面向片上光互连的可集成光源及集成光子芯片技术展开了一系列的研究工作,分别从面发射激光光源的设计与优化,实验制作方案;硅基波导光栅耦合器的设计优化;混合集成片上光互连芯片的实现三个方面进行了阐述。提出了易制作,低成本的表面高阶矩形光栅面发射半导体激光器;渐变脊波导型高阶光栅面发射激光器;提出了面发射激光器通过硅基波导光栅与硅基光子芯片的耦合结构,优化了激光器与硅基波导光栅的耦合效率;研究了混合集成光芯片的实现方案。全文的主要研究内容及成果总结如下:(1)提出了利用表面高阶光栅实现表面发射半导体激光器,并降低半导体激光器的制作难度,制作成本的原理方法。基于格林函数法深入分析了高阶光栅的面发射辐射特性。(2)分析了半导体激光器的工作原理。基于改进的时域行波模型,编写了仿真软件,深入分析了表面高阶光栅面发射激光器的激射性能,并优化了面发射激光器的输出性能。提出了表面高阶光栅面发射激光器的实验制作方案。(3)提出了利用硅基波导光栅与表面高阶光栅面发射激光器的耦合结构,研究了混合集成光子芯片的实现方案。并优化了其耦合效率。
其他文献
重力仪在地球物理学、测地学和计量学及惯性导航等领域都有重要的应用。相比于传统的落体角锥式激光干涉绝对重力仪,冷原子重力仪具有灵敏度高、自校正、可长期连续观测、无机械磨损和维护成本低等优势。然而,冷原子重力仪的实验装置和操作复杂,如何满足小型化与准确性的要求是其发展应用的一个重难点。基于此,本文主要研究以85Rb原子作为测试质量的可搬运高精度冷原子绝对重力仪(命名为WAG-H5-1)。通过磁光阱囚禁
在强激光与原子分子相互作用过程中,原子分子中的电子可以通过量子隧穿效应摆脱原子核的束缚,从而发生隧穿电离。由于隧穿电离可以诱导出许多非常有趣的强场物理现象,如高次谐波产生、非次序双电离、光电子干涉等,因此隧穿电离一直是强场光物理的研究热点。一般地,强场隧穿电离可以分为隧穿和经典运动两步过程,隧穿之后的初始电子波包分布对后续的物理过程(如光电子干涉等)具有决定性的影响,同时也为研究量子隧穿过程提供了
随着太赫兹通信技术的迅速发展,太赫兹调制器的发展也迫在眉睫。铁电薄膜由于具备优良的介电性、压电性和铁电性等重要性能,在微波通信领域得到了广泛的应用。本论文首先对硅基ABO3型铁电薄膜在太赫兹频段的介电特性进行了研究,并进一步探讨了铁电薄膜在外场作用下实现对太赫兹波调制的微观机制,为以后制备太赫兹调制器件提供了参考作用。本论文的主要研究结果如下:(1)研究了相同厚度的ABO3型钛酸铅(PbTiO3,
菌核是真菌在不利条件下在土壤中长期存活的特殊结构。菌核富含几丁质、碳水化合物、蛋白质、膳食纤维、脂肪和矿物质包括钠、钾、钙和镁等。菌核具有多种的潜在作用,也可能作为土壤微生物生长的营养来源。立枯丝核菌和核盘菌是两种常见的植物土传病害的病原菌,产生大量的菌核在土壤中越夏和/或越冬。由于菌核在土壤中与其它微生物共存,我们推定土壤中的菌核可能直接和/或间接地影响土壤微生物群落。为此,本研究对湖北省沙阳县
目的:介绍一种新型的自组装纳米纤维水凝胶的制备方法,并对其负载多聚脱氧核苷酸(PDRN)的形态学、粒径、包封率、载药量、缓释性能及结构进行检测。方法:购买IKVAV、RGD、FGL-PA多肽类片段,按不同比例和不同浓度进行组合,通过层层自组装合成纳米纤维水凝胶,通过比较玻片上纳米纤维水凝胶的流动时间,确定合成纳米纤维水凝胶的最佳配比。将PDRN按不同比例加入上述混合好的多肽溶液中,用同样的方法确定
材料蠕变问题在工程实际中普遍存在,因蠕变变形导致的材料断裂对工程结构安全有着重要影响。同时,随着现代科技的不断发展,微尺度材料在实际中得到了广泛的应用。因此,研究微尺度材料的蠕变性能变得日益重要。本文围绕微尺度材料蠕变特性这一前沿问题,开展了金属细丝应力释放特性实验研究。本文主要研究成果包括:(1)研制了应变式悬臂梁测力传感系统,该系统具有更高的灵敏度和稳定性。在室温下对金属丝进行了拉伸应力释放实
3d过渡金属(如Mn,Fe,Co)等化合物,由于其存在未成对的3d电子,常表现出很强的磁性;同时由于3d轨道能级之间的能量差在可见光波段,对应的电子跃迁引发相应波段的光吸收、发射特性。这些特点赋予这种类型化合物磁、光复合性能,从而使其在数据存储、自旋电子学和传感等方面具有重要的应用价值。低温和强磁场是研究3d过渡金属化合物磁、光性质的极佳条件。在低温,特别是低至液氦的温度下,热涨落引发的电-声子相
脑功能光学成像以其高时空分辨率的优势,在神经科学研究中占据了举足轻重的位置。其中多模式光学成像方法因其多参数同时测量的特性,正成为探索脑功能变化的一项有力工具。然而,生物组织具有散射和吸收的特性,限制了光在生物组织中的传播深度。很多重要神经疾病(如脑卒中、阿尔茨海默综合征、帕金森综合症等)相关的脑区往往位于皮层以下的较深位置,如海马体、丘脑等,而传统的光学成像方法只能用于观察大脑皮层浅表的区域,难
热自旋电子学作为热电转换领域新兴的一门重要学科,近几十年来成为凝聚态物理研究领域的热门,它由传统的自旋电子学基础上发展起来,将温度梯度考虑进去,探究热与电子的内禀属性自旋以及电荷之间的作用规律和实际应用。作为此研究领域的两个重要内容:自旋塞贝克(Seebeck)效应和热电转换效率,是我们所关注的焦点。本论文前期研究集中在两个方面:一方面,探索产生自旋Seebeck效应的新机制新机理;另一方面,将热
背景:具有敏感表皮生长因子受体(EGFR)突变的非小细胞肺癌(NSCLC)患者应用EGFR酪氨酸激酶抑制剂(EGFR-TKIs)治疗效果显著;然而在治疗后期不可避免地会发生耐药。以往大量研究证实脂质代谢重编程是癌症的标志并且与EGFR信号依赖的肿瘤生长作用密切相关。EGFR信号通路的激活可以增加单不饱和脂肪酸(MUFA)的合成和脂质代谢关键酶硬脂酰辅酶A去饱和酶1(SCD1)的表达。但是EGFR-