论文部分内容阅读
本文在较广一类的正质量的渐近平坦3维流形中讨论稳定的常平均曲率球面所形成的叶状结构的唯一性.首先利用稳定性条件得到第二基本形式的积分估计,进而由Simons恒等式得到逐点估计.然后在三个不同尺度将曲面做缩小分析(Blow down analysis),应用调和映射的技巧分析中间尺度上曲面的性态.而后构造渐近调和坐标系,在这种坐标系下考虑一个尺度变换下不变的积分,并以此来检测正质量.最后在很弱的半径假设下证明定理。