论文部分内容阅读
序代数是序和代数结构的结合,同时也可以看作普通代数的一种自然推广.而作为序代数的模糊化,模糊序代数是模糊序关系与代数相结合的产物.目前,随着对模糊序的研究工作日趋成熟,关于模糊序代数的研究也渐渐活跃起来.然而,现有关于模糊序代数的研究大多集中于对模糊序结构的讨论,而代数结构在其中仅扮演次要角色.此外,利用构造方法,许多学者对多种序代数上的粗糙集进行了研究,但却很少关注对相关结果的模糊化推广.基于以上原因,本文的主要目的有二:一是从更侧重于代数的角度来研究模糊序半群理论中的若干问题;二是对格上基于三角模的模糊粗糙算子进行系统的研究.具体研究内容如下: 第一章是全文的综述,介绍了序半群理论、模糊代数、粗糙集理论、模糊粗糙集理论的研究历史与现状,并对本文的创新点及主要内容进行概述. 第二章介绍本文要用到的关于模糊集、粗糙集、序半群和Quantale的一些基本知识.此外,为了对文献[96]中的相关结果进行改进,本章还给出了经由Quantale的模糊子集生成模糊理想的两种方法. 第三章主要研究模糊序半群上的模糊理想,以及模糊序半群与模糊拓扑半群之间的关系.首先,在模糊序半群上引入了模糊理想、模糊双理想、模糊拟理想和模糊内理想的概念,探讨了它们之间的关系,并讨论了这些模糊理想组成的格结构和模糊格结构.其次,建立了模糊序半群与模糊拓扑半群之间的范畴对应关系.最后,对模糊序半群上的模糊理想进行推广,介绍了(∈,∈∨qk)-模糊理想和(∈,∈∨qk)-模糊内理想的概念,并给出它们的若干刻画. 第四章探讨如何通过模糊理想的概念对模糊序半群进行刻画的问题.首先给出了正则模糊序半群和Duo模糊序半群的概念,并利用模糊序半群上的模糊左、右理想、模糊双理想和模糊拟理想对这两类特殊的模糊序半群进行刻画.其次,介绍了广义半单模糊序半群的定义,并分别利用其上的(∈,∈∨qk)-模糊理想和(∈,∈∨qk)-模糊内理想对广义半单模糊序半群进行刻画. 第五章主要对格上的粗糙近似算子和基于三角模的模糊粗糙近似算子进行讨论.首先利用粗糙近似算子对分配半格上的理想进行刻画.然后在格上引入一种经由模糊集诱导的TL-模糊粗糙上、下近似算子,对其基本性质进行了讨论,并着重研究了利用TL-模糊粗糙近似算子对格上的TL-模糊理想进行刻画的方法.最后,定义了格上的TL-模糊拟粗糙理想,并讨论了它与格上的TL-模糊理想和TL-模糊粗糙理想之间的关系.