满足相容条件的压缩映射不动点定理

来源 :中北大学 | 被引量 : 0次 | 上传用户:jakieli
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
自Banach压缩定理被提出以来,已经有大量学者在此基础上对其条件和结论进行了研究,而度量空间中广义压缩映像不动点的存在性问题也备受关注,本文将其压缩条件进行了适当的放宽,推广了近期结论,同时也是对度量空间中经典结论的推广。  本研究分为三个部分:第一章为绪论,介绍了一个映射,二个映射,以及四个映射不动点的研究现状。第二章通过对压缩条件a(Tx)β(Ty)≥1?φ(d(fx,fy))≤η(M(x,y))中的M(x,y)进行了改进,从而对满足T-cyclic(α,β)压缩映射的不动点定理进行了推广,并举出了例子,而且将其结论应用到了泛函方程中。第三章将度量空间中四个自映射的不动点定理推广到了对称空间中四个非自映射的不动点定理。
其他文献
本文考虑了定义在区域上,边界条件是狄利克雷边界条件或纽曼边界条件的斯托克斯流问题.斯托克斯流又称为蠕动流,与粘滞流相比是一种惯性力很小的流体.斯托克斯流在生活中出现的
Morphic环源于具有模直和可消性质的unit正则环的研究.Morphic环的研究已经成为当前国际环论研究的热点.拟morphic环是morphic环和正则环的共同推广.人们对其进行了深入的研
本文主要研究了二维势阱中阻尼系数在X 轴方向变化的布朗粒子,在随机力作用下越过势垒进入更深更稳定的势阱中的逃逸问题。这类问题可用于描述化学反应率问题,由Kramers首次提
近年来由于现代基因芯片测试技术和多电极实验的发展以及计算新方法的不断涌现,我们能得到大量的高通量数据,如何准确可靠地从这些实验数据中发现数据之间潜在的网络结构(基因
随着科技的进步,20世纪70年代初引入的奇异系统理论被广泛地应用于实际工程、社会科学、人类科学、生物、网络等领域中.由于其应用背景和数学意义,奇异系统的研究已经引起了国
新发传染病(Emerging Infectious Diseases),是指严重影响社会稳定,对人类健康构成重大威胁,需要对其采取紧急处理的疾病,包括鼠疫、非典、埃博拉等。每年都会有成千上万的人死于各
排队系统由顾客和服务台双方构成。以往的排队大都是从影响顾客的服务上去研究的,自然这样有利于服务系统的完善。而本文是研究顾客受到阻塞的影响的排队系统。在排队系统中考
生态系统的持久性、周期解和概周期解的存在性及稳定性、全局吸引性等问题是生态数学理论中的一个重要研究内容.本篇硕士论文主要应用常微分方程稳定性理论中的Lyapunov函数法
组合数学是数学界中一门有趣而有用的分支,其内容丰富、应用广泛、发展迅速.组合数学研究的主要对象是离散构形问题,如有趣的幻方问题.图论是研究离散对象的骨干分支,因而图
成型加工过程中聚合物及其复合体系的内部结构动态变化以及聚集态结构演化发展是决定制品最终性能的关键因素。由于采用传统的数值模拟只能预测宏观尺度的一些参数信息,无法