随机动态定价收益和清货模型分析

被引量 : 4次 | 上传用户:candy129
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
面对竞争性越来越激烈的市场,动态定价理论越来越得到广泛地运用。在许多行业中,管理者都面临着在有限的销售时间内销售季节性商品的问题,他们不断动态调整定价使其获得的收益最大化。而随着收益管理应用范围的不断扩大,收益管理动态定价理论已经不仅仅适用于有库存约束的易逝品的销售问题。本文试图将有库存约束的收益管理扩展到有最低销售量且提供补货的易逝商品的应用中去,采用随机动态规划方法理论探讨了如何刻画模型不确定性的收益与清货模型,对有最低销售量约束的商品进行动态定价收益和清货问题进行分析,给出最优的决策结
其他文献
粗糙集理论的优势在于其可以对无任何先验信息的数据进行客观的分析和处理.但是在处理不协调信息系统时,经典粗糙集在处理不协调信息时存在不足:一些随机性信息和不完全性信
极大极小(Minimax)优化是一类特殊而重要的非光滑优化问题.一方面,最优控制、经济金融、能源与环境等领域中的许多实际问题可抽象为一个Minimax优化问题.另一方面,数学规划本
数字图像去噪是图像处理的一个重要分支,其目的是去除观测图像噪声,以恢复图像的原始信息。然而噪声去除和原始信息保持往往是一对矛盾问题。本文将利用全变分正则化方法解决
学位
本文将在Banach空间中研究模糊数值映射方程的Ulam稳定性问题,主要工作包括以下两部分:  第一部分:主要研究了模糊泛函方程的Ulam稳定性。首先,通过考虑有界的函数差,在度量的
本文主要研究了矩阵的半张量积方法在判定多值逻辑切换网络和混合值逻辑切换网络的的稳定性,可控性,可观测性以及在Toffoli门可逆综合两方面的应用.  1.将布尔切换网络可控
目前,一维区间和逆极限空间动力系统理论和成果的发展已经非常完善,但是在实际应用中,很多学科中出现的数学模型大多属于高维乘积空间自映射的迭代问题,与此同时很多学者也遇
本文研究内容涉及到数值计算方法中的几个方面,主要侧重研究基于紧致差分格式的数值梯度方案在部分偏微分方程中的应用,同时也对外推方案在涉及时间项的偏微分方程上的应用进