两类本原有向图的scrambling指数和m-competition指数

来源 :中北大学 | 被引量 : 0次 | 上传用户:sturdy13
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
组合数学研究时间久远,它是数学的一个骨干分支,主要以离散结构为研究对象。图论起源很早,是离散数学的重要分支,是研究由线连接的点集的理论。随着图论的不断发展,本原有向图的scrambling指数,广义scrambling和m-competition指数成为图论中比较热门的研究课题。  本文主要结合图论和组合论的相关知识,通过对本原有向图中每个顶点经过k长途径所到达的顶点集合进行分析,得出两类本原有向图的scrambling指数和广义scrambling指数,得出另一类本原有向图的m-competition指数。主要内容有:第一部分介绍了scrambling指数,广义scrambling指数以及 m-competition指数的一些历史背景以及相关概念。第二部分探究了两个含有2个s圈和1个n圈的n阶本原有向图的scrambling指数和广义scrambling指数。第三部分探究了一个包含有2个n2圈和1个n3圈的n阶本原有向图的m-competition指数。
其他文献
在逼近问题中,对于不同的目标函数,采用的逼近算子也有所不同。Kantorovich算子是Bernstein算子的一种推广。本文是以Bernstein算子及其推广算子的函数逼近性质为基础,研究推广
由信度理论厘定信度保费是非寿险保费计算的一个重要方法,信度理论在国外已经有许多研究,特别是近几年,将现代统计理论和传统的信度模型相结合,产生了很多既有理论深度又有实用价
本文分为两个部分.第一部分研究一阶拟线性双曲组Cauchy问题行波解的存在性及稳定性.在弱线性退化条件下,证明了拟线性双曲系统Cauchy问题适当小的此处公式省略:范数适当小的行
近年来,非线性科学迅速发展成为一门新的学科。孤子理论作为非线性科学的一个重要分支,从二十世纪六十年代以来获得了重大的发展,在流体力学、等离子体、光学、通信等自然科学领
L(2,1)标号问题是经典着色问题的一个推广,而L(2,1)圆标号问题对L(2,1)标号问题的一个变形,社k是一个正整数,f:V(G)→{0,1,2,…,k-1}是一个映射,如果成立,其中|X|k:=min{|X|,k-|X|},则称
本文主要研究一类基于元生理方法建立的捕食与被捕食系统的动力学性态。其中x1和x2分别表示食饵与捕食者的生物量密度。参数均为正,其具体的生物学意义。系统不同于传统的基于
非负矩阵理论作为一种基本工具被广泛应用于数值分析、图论、计算机科学、管理科学等领域中.有关非负不可约矩阵的谱半径估计是该理论的核心问题之一.  不可约非负矩阵特征
在信息时代的今天,随着网络和通信技术的高速发展和广泛应用,越来越多的信息在网络上传输。信息的安全与保护问题显得愈发重要,使得密码学理论与技术成为信息科学与技术中的一个