论文部分内容阅读
高功率单频拉曼光纤放大器(SF-RFA)的性能往往会由于受激布里渊散射(SBS)的出现而受到限制。数值模拟结果表明单级SF-RFA的输出功率较低,且所需的抽运功率远高于实际器件所能承受的水平。采用多级放大结构可使SF-RFA的输出功率和效率均有较大幅度的提升;各级放大器应选择适当类型的光纤,在波分复用器(WDM)所能提供的抽运功率范围内,可得到较高的放大光输出。以二级放大系统为例,第一级放大器使用100 m、纤芯有效直径为6μm的标准单模光纤,通过在光纤中施加应力梯度来抑制SBS,在抽运功率为32 W时,得到约3 W的输出;以此为第二级放大器的种子信号光,使用70 m、纤芯有效直径为15μm的光纤,同样通过施加应力梯度抑制SBS,在抽运功率为105 W和130 W时可分别得到20 W和30 W的放大光输出。
The performance of high power single frequency Raman fiber amplifiers (SF-RFAs) tends to be limited by the appearance of stimulated Brillouin scattering (SBS). The numerical simulation results show that the SF-RFA single-stage output power is low, and the required pumping power is much higher than the actual device can withstand the level. The use of multi-stage amplifier structure can SF-RFA output power and efficiency have greatly improved; all levels of amplifier should choose the appropriate type of fiber, wavelength division multiplexer (WDM) can provide the pump power range Within, you can get a higher amplification of light output. Taking a two-stage amplification system as an example, the first-stage amplifier uses a standard single-mode fiber of 100 m and an effective core diameter of 6 μm and suppresses the SBS by applying a stress gradient in the optical fiber. When the pumping power is 32 W, 3 W output; this is a seed signal light for a second stage amplifier using a 70 m fiber with an effective core diameter of 15 μm, also suppressing SBS by applying a stress gradient of 105 W and 130 W Get 20 W and 30 W of amplified light output respectively.