极小化问题相关论文
本文研究了一类关于1-Laplace算子的非线性偏微分方程的Dirichlet问题:其中?是_R~N中带有Lipschitz边界的有界开区域,维数N≥2.非......
对于非光滑优化,又可以称为不可微优化,它是最优化理论与方法的一个重要分支.解决非光滑优化问题的方法有很多种,如次梯度方法、光滑......
极小化问题的粘性解方法来源于一些现代变分学的研究,函数序列的变分收敛及算子序列的变分收敛为这些问题提供了灵活的工具。粘性解......
假设O∈Ω是R中的有界光滑区域,其中N≥3。考虑以下的拟线性极小
其中a≥0,b≥0,q与a,b有关。在这篇文章中,我们将会证明,如果以下......
压缩传感是2006年Candes提出的一种新的信号处理方式,它突破了传统信号处理方式对采样率的要求,能够从低维样本空间重构出高质量的......
引入集值目标映射的向量平衡问题的两类广义Tykhonov适定性,利用非紧性Kuratowski测度给出它们的度量刻划和讨论这两类适定性的充......
本文中,我们考虑一般的无约束极小化问题:minx∈R^nf(x),(1,1)其中f:R^n→R二次连续可微.......
本文在预不变凸函数的基础上,引进了一类特殊的凸函数-B-强预不变凸函数,给出了B-强预不变凸函数的一些性质,并且讨论了此函数关于目......
在(h,φ)-η-预不变凸函数的基础上,利用Ben-Tal广义代数运算定义了严格(h,φ)-η-预不变凸函数,并且建立了该函数与(h,φ)-η-预不变凸......
该文首先得到了严格B-预不变凸函数的一个充分条件,然后给出了严格B-预不变凸函数的一些性质,最后得到了关于目标函数为严格B-预不变......
在Tikhonov正则化方法的基础上将其转化为一类l1极小化问题进行求解,并基于Bregman迭代正则化构建了Bregman迭代算法,实现了l1极小......
本文讨论线性极差函救的性质和最速下降方向,由此推出线性极差极小化问题的最优条件和求解算法。最后探讨了它在模式识别和形状误......
首先给出广义混合变分不等式的Levitin-Polyak-α-近似序列以及适定性的定义.然后,定义广义混合变分不等式的gap函数并证明广义混......
本文综述了声波反问题的历史发展,对不可穿透的障碍散射问题论述了反散射问题中的非线性的几种数值解法,并给出在研究中存在的困难......
B-(p,r)-预不变凸函数是一类新的广义凸函数,它是B-(p,r)-不变凸函数的推广。本文讨论了B-(p,r)-预不变凸函数的一些性质;然后利用B-(p,r)-......
提出了在平稳点有限的情况下无约束极小化问题的神经网络求解模型,给出了网络的全局稳定性分析以及各个平稳点的吸引域估计,证明了......
本文主要运用偏微分方程和变分的方法讨论图像处理中的一些数学模型和快速算法,主要内容包括图像去噪和图像分割两个方面。一般来......