LERAY-SCHAUDER度相关论文
随着科学技术的发展,在自然科学和社会科学领域中广泛存在的非线性问题,越来越引起人们的关注,而且许多非线性问题的研究最终可归......
本文主要利用上下解方法研究了几类常微分方程的边值问题,得到了许多有意义的结论.第一章简要介绍了常微分边值问题上下解方法的一......
随着反应扩散方程在生态学问题中的广泛应用,学者们渐渐地发现了更多无法用随机扩散来解释的现象.例如,物种会有目的地向着资源丰......
本文主要研究非线性Sturm-Liouville微分方程组的分量式正解的存在性和正解的多重性.首先,一个非线性项满足一致超线性(或者一致次......
分数阶微分方程是微分方程的一个重要分支,它是一门研究任意非整数阶微分方程的理论,包括任意实数甚至复数阶次.关于分数阶微分方......
本文研究了加权p-harmonic算子△p,wu=△w(|△wu|p-2△wu)在Navier边值条件(即u=△u=0,x∈()Ω)下的整体分支现象.上式中记△wu=div......
该文主要研究拓扑度方法在时滞微分方程周期解问题中的应用.全文共分三章.第一章首先利用L-κ-集压缩算子的重合度方法研究了非线......
该文主要研究以下两类齐次边值问题的整体分歧现象:其中Ω CR是有界光滑区域,λ∈R是实数,a,b,f,g是它们各自变元的已知非线性函数......
众所周知,Hilbert和Banach空间中的距离投影算子在许多数学领域中有广泛的应用,例如,在泛函分析、数值分析、优化和逼近论、最优控制......
本文的结构如下: 第一部分是引言,介绍了与本文有关的介调和方程的研究背景和本文主要讨论的内容,并叙述了本文的主要结果。第二......
泛函微分方程是描述带有时滞现象的数学模型。带有反周期时滞和周期时滞的泛函微分方程在生物学、经济学、生态学和人口动力系统等......
Navier-Stokes方程作为流体力学的基本方程之一,具有悠久的历史。它描述了粘性流体的运动,在流体力学的各个领域有普遍应用。平静的......
Frenkel-Kontorova模型(FK模型)是耦合振子系统中的一种典型模型,在非线性物理学中有广泛应用,其滑动解在FK模型中起着重要作用. ......
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7......
利用Leray - Schauder度理论研究二阶Liénard方程:x″(t)+f(x(t))x′(t)+g(t,x(t-(t)))=p(t)反周期解的存在性和唯一性.......
利用Leray-Schauder度方法研究一维p(t)-Laplace方程组多点边值问题解的存在性.当非线性项f(t,u)关于u满足次p-次增长条件时,证明......
综合利用Leray-Schauder度理论的同伦不变性、上下解方法等,在符号型Nagumo条件下获得了一类三阶非线性常微分方程在非线性边界条......
利用加权索伯列夫空间中的p-harmonic方程非线性特征值问题的相关结果,Leray-Schauder度理论以及标准分支定理,讨论了加权p-harmon......

