LIOUVILLE定理相关论文
近年来,高阶非线性偏微分方程的研究日益受到重视.这是因为此类方程已经被广泛地应用于描述经典力学中的弹性薄板形变模型、稳态的......
本文主要研究了几类半线性椭圆型方程(组)解的存在性、非存在性以及其它定性性质,包括对称性、类共形不变性、一致有界性等.全文共分......
完全非线性偏微分方程是一类非常重要的偏微分方程,它和凸几何,微分几何,复几何,概率论等数学分支紧密联系,并且在最优运输,图像处......
完全非线性偏微分方程理论起源于古典微分几何中的Weyl问题和Minkowshi问题,以及K¨ahler几何中Calabi猜想的研究.经历上世纪70年......
在本文,我们一方面致力于研究三维不可压磁流体方程组及相关模型在一些临界空间小初值解的整体适定性、解析性和衰减估计,另一方面......
本文我们主要证明全空间Rn上分数阶方程组此处为公式等价于下面的积分方程组此处为公式其中0<α<2,p,q>1,G(X,y)是Rn中关于分数阶Lapl......
本文分两部分,分别研究了调和映照和指数调和映照的Liouville型定理。在第一部分中,本文考虑调和映照u:(M,g)→(N,h)在无穷远渐进条件......
学位
这篇论文主要研究了三类问题: gradient generalized quasi-Einstein流形的分类;static space的分类; porous medium方程的梯度估......
本文首先考虑了一类非线性退化椭圆方程(即所谓的A-调和方程)在外边界区域(无界的)上的Dirichlet,边值问题,利用A-调和型方程的基本......
本文在完备非紧的光滑度量测度空间(M,g,e-fdVg)中,研究扰动的P-Laplace方程.我们利用加权Sobolev不等式及加权Poincaré不等式,在一定条......
Finsler几何就是度量上没有二次型限制的黎曼几何.伟大数学家黎曼(B.Riemann)早在1854年所作的具有历史意义的就职演说中已考虑了......
本文建立一个新的非线性Picone恒等式,它包括一些已有的Picone恒等式.利用这个新的Picone恒等式,我们给出了带奇异项p-Laplace方程......
设(Mn, g)是一个n维的完备黎曼流形, 其Ricci曲率满足RicM(x)≥-A(1+r2(x)ln2(2+r(x))), 其中A是非负常数, r(x)表示点x∈M到某固......
该文研究了二阶和四阶非线性Henon-Lane-Emden方程有限Morse指标解的Liouville定理.利用一种新方法,即使用单调公式、Pohozaev恒等......
应用Scaling方法和Evans-Krylov的C2,α内估计,证明了全空间上二阶完全非线性椭圆方程的Liouville定理.......

