Reinhardt域相关论文
Loewner理论是多复变函数论的重要组成部分,而Roper-Suffridge算子在由单复变数的双全纯函数构造多复变数的双全纯映照中有着至关重......
多复变函数论中不变度量的研究是国际上的热门研究方向之一。通常经典不变度量是指Bergman度量、Carath(?)odary度量、和Kobayashi度......
本文主要研究了几类特殊的Reinhardt域的性质和用多重次调和函数描述其边界及Bloch空间上的复合算子和加权复合算子的性质。 ......
学位
本文主要研究C中有界域上的逆紧全纯映射理论,全文共分三章。 第一章介绍了关于逆紧全纯映射方面的知识,特别是拟凸域上逆紧全纯......
Bergman核函数理论在多复变函数论的发展中扮演了一个非常重要的角色,并且对很多相关领域的发展起到了促进作用,比如微分几何、泛函......
本文研究多复变数C中的完全准凸映射,分别在两类Reinhardt域B和D上建立正规化双全纯完全准凸映射的分解定理,当p→∞和p1,p2,…,pn→∞......
学位
本文的研究对象是如下的Reinhardt域:令M=(M1,M2,…,Mn):[0,1]→[0,1]n是一个C2-函数,且Mj(0)=0,Mj(1)=M″j>0,c1jrpj-1<M′j(r)<c2jrpj-......
学位
本文研究了Reinhardt域的全纯自同构群在原点的最大迷向子群的结构,获得了几类Reinhardt域的全纯自同构群在原点的最大迷向子群的......
学位
本篇硕士论文中,作者重点讨论了多复变数Reinhardt域上推广Roper-Suffridge算子的若干性质.我们得到了该算子在不同地条件下保持了......

