乘法算子相关论文
众所周知,随着调和分析和偏微分方程的快速发展,它们的联系日益密切。如偏微分方程的研究中,调和分析方法已成为一个重要的课题。......
本文主要研究在单位圆盘D上的Area Nevanlinna空间,Zygmund型空间,Bloch-Orlicz空间,混合范数空间等全纯函数空间上的乘积型算子和......
近年来,对一般解析函数空间上乘法算子的约化子空间研究一直是备受关注的重要课题,并且取得了一些显著的成果.这些结果也实现了分......
在本文中,我们一方面讨论了解析函数空间Q_s~p(D)和Q_s~p(T)的一些基本性质,其中包括空间的完备性,这两种空间的关系,空间的包含关......
在M.J.Cowen和R.G.Douglas的经典论文[3]中介绍了希尔伯特空间上算子的一类特殊的算子Bn(Ω),对算子T∈Bn(Ω)他们定义了一个相应......
近些年来,关于解析函数空间,尤其是Bergman空间上的乘法算子的研究一直是受到相当关注的重要课题。这一研究不仅可以帮助理解复变函......
函数空间上的算子理论一直是泛函分析的一个重要课题,它作为数学的一个分支,已经历了相当长的研究历程,并形成了一整套丰富的理论体系......
函数空间上的算子理论是联系着函数论与算子理论的纽带与桥梁.目前函数空间上的某些具有代表性的线性算子的结构是算子理论中研究......
不变子空间和约化子空间问题是算子理论中重要的,有意义的课题.每个有界线性算子都有一个非平凡闭不变子空间是一个基本猜测.在刻画......
学位
本文在刻划扩张仿射李代数的扩张仿射根系时介绍了半格的概念,并由半格出发构造了一类以Jordan环面为坐标代数的A1型扩张仿射李代数......
设Ω为复平面C内有界的单连通解析Cauchy域,dA表示C上的平面Lebesgue测度.Sobolev空间W2,2(Ω)是L2(Ω,dA)中所有的一阶及二阶广义偏导数D......
算子理论是泛函分析的重要组成部分.作为是算子理论的重要分支,解析函数空间上的算子理论,一直得到国内外学者的持续关注.因为Toepl......
本文研究了双圆盘加权Bergman空间上乘法算子的相似性及约化子空间问题.设A2α(D2)(α=(α1,α2),αi>-1,i=1,2)是C2中的双圆盘加权Bergm......
算子的换位与约化子空间一直是人们感兴趣的课题,由算子的换位,人们研究了算子的相似等价和酉等价.Toeplitz算子是一类具体的算子,关......
文章用径向导数定义了 H(B)空间上的微分算子,从而研究了单位球上加权Bergman-Nevanlinna 空间到 Bloch-型空间上乘法,复合,微分算子......
研究一类由单位圆盘D上的Sobolev空间W2,2(D)中的解析函数构成的代数,称之为Sobolev圆盘代数,给出了其上的有界线性乘法算子Mf的基......
期刊
在本文中,主要给出乘法算子在齐次Herz type Triebel-Lizorkin空间的双线性有界性。。...
Fock空间是由整函数组成的具有再生核的Hilbert空间.Fock空间上的乘法算子的定义域不是整个Fock空间,它在Fock空间上是稠定的.研究......

