半正相关论文
随着科学技术的不断发展,各种各样的非线性问题已日益引起人们的广泛关注,非线性分析已成为现代数学中的重要研究方向之一.而非线......
本文利用锥上的不动点指数定理,范数形式的锥拉伸与锥压缩不动点定理,研究了几类非线性常微分方程边值问题的正解.本文共分为四章:第......
随着科学技术,近代物理学和应用数学的不断发展,各种各样的非线性问题日益涌现.这些非线性问题日益引起了人们的广泛重视,极大的促......
非线性泛函分析是现代数学中一个既有深刻理论意义,又有广泛应用价值的研究方向,它以数学和自然科学各个领域中出现的非线性问题为......
边值问题由于其在科学、工程和技术的几乎所有领域都有着广泛的应用而成为测度链上动力方程的一个重要分支。通过研究测度链上的动......
随着科技发展和时代进步,分数阶方程理论得到逐步完善.近年来,分数阶微分方程在空气动力学、控制工程、生物物理学等多方面领域被......
非线性泛函分析是现代数学中一个既有深刻理论意义又有广泛应用价值的研究方向.它以数学和自然科学各个领域中出现的非线性问题为......
本文利用锥理论,不动点理论,Krasnoselskii不动点定理、上下解方法等研究了有限区间和无穷区间上几类微分方程奇异和半正边值问题(......
非线性泛函分析是现代数学中一个既有深刻理论意义又有广泛应用价值的研究方向.它以数学和自然科学各个领域中出现的非线性问题为......
非线性泛函分析是应用数学中具有深刻理论和广泛应用的研究学科,以数学和自然科学中出现的非线性问题为背景,建立了处理非线性问题......
学位
最近,由于分数阶微分方程在各种学科如物理学、数学和工程学等的广泛应用,众多研究者利用不动点定理、压缩映像等理论证明了它的解......
随着非线性分析理论的逐渐完善,分数阶微积分因其高准确度和应用性,为科学家在各个领域的研究提供了精准的工具.分数阶微分不仅为......
本文主要对一类带双参数的非线性四阶Neumann边值问题的正解进行了研究,通过介绍弹性梁方程的研究背景及现状分析,提出本文主要讨......
学位
非线性泛函分析是数学中既有深刻理论又有广泛应用的研究学科,以数学和自然科学中出现的非线性问题为背景,建立了处理非线性问题的......
非线性分析及应用是数学学科中很重要的一个研究方向,它以自然科学中出现的非线性问题为背景,建立处理非线性问题的若干一般性理论......
非线性泛函分析是现代分析数学的一个重要分支,因其能很好的解释自然界中的各种各样的自然现象而受到了越来越多的数学工作者的关......
为了使多点边值问题在弹性稳定性理论中得到更广泛的应用,利用锥拉伸与压缩不动点定理,研究一类半正二阶三点边值问题正解的存在性......

