异宿环相关论文
本文主要研究了三维向量场空间中的异维环在发生轨道翻转时的分支情况.通过在异维环附近建立活动坐标架,然后建立庞加莱映射推导出......
学位
本文主要讨论一类Lienard系统和一类近哈密顿系统的复合环分支和异宿环分支.第一章主要介绍了所研究的课题的背景、研究现状以及本......
学位
本文研究的是平面系统中,更高退化情况下异宿环的稳定性问题。文章首先利用了规范型理论和初始条件得到了奇点邻域内的局部映射,然......
学位
本文主要研究了三维向量场空间中的非横截异维环发生正向轨道翻转时的分支情况,其中Г1是轨道翻转的异宿轨(即当t→+∞时轨道沿着......
在近哈密顿系统极限环个数的研究中,首阶Melnikov函数起着至关重要的作用.假设H(x,y)=hs定义了一个异宿环,在异宿环附近的Melnikov......
学位
本文讨论了三维动力学系统中一类伴有轨道翻转所形成的异维环分支问题.通过在异维环微小邻域内建立局部直角坐标系,我们给出系统在......
学位
本文研究余维3的三维系统Xμ(x),含有两个鞍-焦点O1和O2,有一条连接这两个平衡点的非粗糙异宿轨线Γ0,另外,关于平衡点O1有两维稳......
本毕业论文,主要研究高维系统中具倾斜翻转或轨道翻转的同宿环或异宿环的分支问题。利用由文献首先引入的在同(异)宿轨附近建立的局......
同宿轨或异宿环的存在性在混沌的研究中起着非常重要的作用,因为许多混沌现象都跟它们有关.例如,著名的Shil’nikov定理以及相关的一......
本文第一章为引言,主要内容是介绍所研究课题的来源,现状,以及本文的研究方法和主要结论.
第二章主要研究平面近哈密顿系统在......
本文主要讨论了同宿轨和异宿轨的分支问题,全文分为三章.
第一章主要介绍了分支理论的发展背景和研究现状,同时介绍了本文的主......
分段光滑动力系统是一类典型的非线性动力系统,而在分段光滑动力系统中,最常见的就是分段线性系统.分段线性系统不仅能恰当地描述很......
本文主要讨论一类具有两个尖点的异宿环的系统的极限环分支问题. 第一章主要介绍所研究课题的来源、发展历史、研究现状以及本......

