除环相关论文
保持问题是矩阵论研究领域中一个十分活跃的课题,它在图论、微分方程、系统控制等方面都有重要应用。本文在介绍矩阵空间的保持问题......
不可分解模是代数表示论和环模理论中十分重要的概念.自同态环为除环的模作为一类特殊的不可分解模,也一直被许多学者所关注.注意......
本文首次得到L-零矩阵的(广义)Bott-Duffin逆矩阵及矩阵的加权Drazin逆的若干新性质以及这两类广义逆的新表达式。鉴于除环在......
矩阵广义逆概念首先由E.H.Moore于1920年提出.从那时起广义逆理论不断完善,应用范围不断扩大,已涉及统计学,控制论,动力系统,非线性方程......
矩阵几何是华罗庚于上世纪40年代中期由于研究多元复变函数论的需要所开创的一个数学研究领域.三角矩阵在李代数中有重要地位,三角矩......
线性保持问题是矩阵理论及应用中的一个重要研究领域,它在微分方程,系统控制等领域有着广泛的应用,近几十年来取得了丰硕的成果.矩阵......
矩阵保持问题主要研究从某一矩阵空间V1到另一矩阵空间V2上的保持某些函数、子集、关系、变换等不变量的映射.这类问题由于在微分......
学位
矩阵广义逆是矩阵论中非常活跃的研究领域,它在微分方程,马尔可夫链,数值分析,密码学和控制论等诸多领域都有广泛应用价值.正如我们所知......
本文在介绍矩阵空间保持问题的背景和发展概况之后,分别在非交换局部环和除环中,对上三角矩阵代数保持矩阵逆的双射进行了研究,得到的......
近四十年,矩阵的保持问题是矩阵论中一个特别活跃的领域,因为它有很好的理论价值和实际意义,它在微分方程、系统控制、数理统计等领域......
经典几何现在被推广为关联几何,它其中包含最为基础的射影几何与仿射几何,很多文献中使用不同的公理化定义,而且证明这些不同的公理化......
进一步刻划除环上矩阵A的广义逆A(2)T,S,给出A(2)T,S,存在的一个充要条件,并且证明对适当的矩阵C,A(2)R(G),N(G)分别与群逆,Drazin......
设R,Q分别表示实数域、实四元数体.Mn(Q),SC(Q)分别为Q上n×n全矩阵R-空间和n×n自共轭矩阵R-空间.设L为保逆算子且N-1(CCn(Q),Mn(......
给出了除环上矩阵对的一种等价分解,从而分别导出了A(n){1}…A(1){1}( )(A1)…A(n)){1}及A(n){1,2}…A(1){1,2}( )(A1)…A(n)){1,2......
目的:将复数域上幂等矩阵秩的一个等式推广到除环上.方法:采用广义逆矩阵的理论.结果:得到了除环上的类似等式.结论:复幂等矩阵的......
针对分块矩阵在除环上群逆的表示,在证明中使用的引理并不能根据所给条件判定得到分块矩阵群逆的存在性,采用举反例的方法说明存在......
设K为除环,Kmxn是K上所有mxn矩阵的集合.设A∈Kmxn,满足rank(As+1)=rank(As)的最小非负整数s称为A的指标,记作Ind(A)=s.设A∈Kmxn,......

