两种淡水缘毛类纤毛虫形态发生的研究

来源 :杭州师范大学 | 被引量 : 0次 | 上传用户:manacewj
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
缘毛类纤毛虫具有独特的细胞形态结构和生活史特征,因此引起了纤毛虫学家的广泛关注。过去的研究主要集中在分类学,生活史,显微结构和超微结构,亲缘关系和系统定位这些领域。然而,缘毛类纤毛虫的形态发生,特别是口器发生的研究严重滞后。因此,作者于2008年7月至2009年11月,用改进的蛋白银染色法对两种大型淡水缘毛类纤毛虫——伞形聚钟虫(Campanella umbellaria)和宋氏伪累枝虫(Pseudepislylis songi)的形态发生做了详细、深入的研究。研究成果总结如下:①缘毛类纤毛虫的口器发生开始于生发列毛基体的增生;②生发列毛基体增生的结果是形成了与原生发列几乎相同的两条新的生发列,而后分别成为新口器的咽膜2和咽膜3;③这两条新形成的生发列,在接近口漏斗开口处的一小段仍由无序的毛基体组成,这些无序的毛基体便是生发带原基;④而后,生发带原基开始增生,形成一较宽的生发带。组成生发带的毛基体继续增生,从而导致了生发带向胞口方向延长;在生发带延长的同时,肌丝网沿着口漏斗到胞口的方向开始降解,最后完全消失。在上述过程的同时,口漏斗顺时针方向旋转;⑤单动基列由两条基列通过微纤丝相连而构成。这两条基列的毛基体开始增生,结果是其中一条基列转变成原口器新的单动基列,而另一条则成为新口器的复动基列;⑥口漏斗旋转的结果是使上述新老结构几乎处于同一水平面上⑦在上述过程的某个时刻,口器的口围盘部分形成了另一条增生带,与原来的增生带汇合形成了一条新的增生带;⑧这一新增生带的毛基体开始聚集、重新组装,结果形成了新口器的单动基列。位于这条单动基列一侧的剩下的那些毛基体,随后也开始重组,最终成为新口器的生发列;⑨在上述结构形成的同时,原口器单动基列的口漏斗部分生成了一些新的毛基体,这些毛基体增生,而后重组,结果形成了原口器新的生发列;⑩在细胞二分裂结束时,没有发现新生成的肌丝网。在细胞二分裂期间,大核染色质最初聚集浓缩,变成肾形,后变成无规则形状。随着细胞质的分裂,大核断裂为二,分别在两个仔细胞中伸长,最后恢复为正常形态。研究首次证实,缘毛类纤毛虫具有相同的形态发生模式。
其他文献
艺术家不同阶段的绘画风格有时是并存的,绘画面貌绝对差异在一个人的艺术生涯中是不存在的,也是很难找到清楚的界限的。但为便于讨论,如选取在某一时段主导的差异性特征来重新审视透纳的艺术,便会让我们从不同视角发现更为清晰的脉络。
[研究目的]构建海量异构环境下数据湖的体系架构。[研究方法]该文分析了数据仓库与数据湖之间的差异,阐述了数据湖实施必要性以及所面临的挑战,构建基于数据流转维度及业务处理维度的数据湖架构。[研究结论]数据仓库与数据湖之间存在数据结构、采集模式、数据过程、实时性、数据存储、数据访问、用户等七个方面的差异;数据湖面临治理策略需有效、数据标准需规范、技术措施需明晰、业务协同需加强等挑战;基于数据流转维度架
微分方程的产生和发展已有三百多年历史,有关微分方程的研究已成为现代数学的一个重要分支,因此本硕士论文由五章组成,主要是对几类脉冲微分方程做定性分析.第一章绪论,简单介绍了问题产生的历史背景以及本文的主要工作.第二章研究一类中立型的时滞脉冲微分方程的解的渐近行为,通过对该类脉冲微分方程解的研究,利用李雅普诺夫函数建立了使该系统解出现渐近行为的充分条件.第三章研究一类二阶脉冲常微分方程的解的稳定性和渐
本文第一章引言主要介绍了Euclid环的背景以及国内外研究现状和本文的主要结果.本文第二章回顾了一般代数学中环与模、理想、商环、循环模等基本概念及其性质,然后介绍了Euclid整环的主要结果,为进一步的研究奠定基础.第三章主要研究了ω-Euclid环上矩阵结构.本章分为三部分.第一部分讨论了ω-Euclid环的基本性质.在第二部分中,我们研究了ω-Euclid环上的矩阵对角化问题,证明了右ω-Eu
本硕士论文主要研究了环模的Morphic性质,进而研究环模上几类新结构.本文分为七部分.第一部分:简述关于Morphic环(模)的研究背景和现状和本人的主要工作.第二部分:给出了本文涉及的环模预备知识.第三部分:首先提出一类介于Morphic环与π-morphic环之间的新环——n-morphic环,讨论了n-morphic环与其他特殊环间的联系,得到其隅角环仍具有n-morphic性质,并且举出
非线性算子的不动点理论是非线性分析的重要组成部分,该问题的研究已经在偏微分方程、控制论、经济平衡理论及对策理论等领域获得了极为成功的应用.最重要的非线性映象是非扩张映象、单调映象、增生映象以及伪压缩映象,关于这些映象的不动点的存在性及其迭代收敛性的研究也显得尤其重要.本文主要研究了几类非线性算子不动点及迭代收敛性.论文分为四部分:第一章讨论了非线性算子不动点及其迭代算法的背景及研究现状;第二章是在
我国当前的钢铁冶炼行业还需要进一步的发展,特别是在一些新型技术的应用上,国家还不能有效的充分实现节能减排。在当前钢铁冶炼的生产过程之中,活性石灰发挥了重要的作用,它能有效的帮助优质钢铁出产。活性石灰在类型上归属于轻烧石灰,与其他普通石灰相比,这种实惠的气孔率更高,同时体积密度也相对较小,因此在锻造过程中可以有效地发生反应,实现较高的产钢质量。
本文研究几类弱于第一可数性的连续集值映射空间的拓扑性质,内容分为5章.第1章给出介绍集值映射空间Ck(X,R)在赋予紧开拓扑下的基本概念,记号和预备知识.给出了可数强fan tightness, Frechet性质,严格Frechet性质,强Frechet性质和k-Frechet Urysohn性质的定义.第2章讨论了连续集值映射空间Ck(X,R)在赋予紧开拓扑下的可数强fantightness的
"大遗址考古"的本质内涵是针对规模大、价值高的古代遗址所开展的系统性、整体性的田野调查、勘探、发掘与研究工作。中国百年考古历程以极其丰富的"大遗址考古"实践是"大遗址考古"的理论源泉,日趋成熟的"大遗址考古"理论对中国考古学和文化遗产保护事业产生了巨大的推动作用。"大遗址考古"是中国特色、中国风格、中国气派考古学的生动实践与体现,是中国考古学重大理论创新。通过对其萌生、形成、发展、成熟过程进行阶段