高振荡微分方程数值解法的研究

来源 :北京交通大学 | 被引量 : 0次 | 上传用户:kimimoomoo
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
高振荡微分方程是其解具有高振荡性的一类微分方程,它广泛应用于诸如分子动力学、天体力学、量子化学以及原子物理等方面。因此,研究其数值解法具有重要意义。对于高振荡微分方程,一般的数值解法难以给出好的计算结果。例如,对于形如y”+g(t)y=0的线性高振荡方程,经典的方法在处理该类问题时均会产生较大的误差。近来,Iserles利用Magnus展开方法详细研究了该类方程数值解法问题,给出了计算结果较好的数值算法。E.Hairer等研究了高振荡微分方程对称的数值解法。 本文介绍了Hamilton方程的性质、辛几何算法、对称方法、Magnus展开和Neumann展开方法。在Magnus展开和Neumann展开方法中,迭代都起着重要作用,我们考虑了利用迭代法构造高振荡微分方程的数值解法。对于基于迭代的数值解法,以FPU问题为例进行了数值实验,实验显示,该方法可给出较好的数值结果。
其他文献
设G是具有n个顶点与m条边的连通图,则G的Zeta函数可以表示为ZG(u)=(1-u2)n-m/f(u)其中f(u)=drt(In-uA(G)+u2(D(G)?In)),A(G)和D(G)分别为图G的邻接矩阵和度对角矩阵.在本文中
本文主要是为Galerkin的无网格方法设计高效的数值积分策略。我们考虑了三类二阶线性椭圆偏微分方程模型:pure Neumann边值问题、本质边界条件的问题、一般的非常系数的椭圆方
近年来,随机神经网络的理论和应用研究受到了广泛的关注,噪声干扰下的混沌同步也已成为-个新的研究热点。本文基于随机微分方程的Lyapunov稳定性理论,分别研究了具有离散时滞和
学位
时标上的微积分理论可以揭示具有连续和离散相间系统的动力学性质.应用该理论研究网络模型,不仅可以探索网络在时标上新的理论结果,还可以避免分别对连续与离散系统的重复论证.
独立条件在经典风险模型中起着重要的作用。由于独立条件的限制使得经典风险模型过于单一化,此外,该模型忽略了投资利率变动、通货膨胀、竞争等因素作为随机干扰项的影响,而月保
偏微分方程数值方法包括不同的离散方法,如有限元方法、差分方法、有限体积法、谱方法等。其中有限元方法利用变分形式对原问题进行离散,对于某些问题存在很好的便捷性。而在不
本文围绕约束力学系统的Mei对称性这一主题,主要研究Nielsen体系和Appell体系的Mei对称性与Mei守恒量问题。   目前,有关Nielsen体系的对称性与守恒量的研究主要局限于双面
通过发生函数的零点来研究离散序列的组合性质是组合学中的一个重要课题。本文研究了组合学中实零点多项式的若干问题.具体内容如下: 本文第一章简要介绍了组合学中实零点
本文主要研究了Wang-ball曲线基于切比雪夫多项式和广义逆矩阵,以及张量积Wang-ball曲面基于广义逆矩阵的降阶逼近算法.   文章主要介绍了所研究问题的应用背景,以及Wang-ba