一类孤立子系统的无穷守恒律及Hamilton结构

来源 :郑州大学 | 被引量 : 0次 | 上传用户:zoujianjun
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文立足于一个2×2谱问题,获得了3×3Lenard算子对(K,J),并由此导出一类非平凡的(1+1)维孤子方程族。对该方程族中的参数取不同的值,可得到广义TD族,TD族,广义C-KdV族和C-KdV族;为研究其Hamilton结构,通过定义新的Lenard递推序列{Gj}得到了该等谱方程族的2×2Lenard算子对((K),(J));进一步本文还通过特征函数的组合关系所满足的Riccati方程,得到了该等谱方程族的无穷多个守恒律;为简便起见,本文以广义TD族为例,由它的2×2Lenard算子对的性质证明了此算子对为Hamilton算子对,这说明广义TD族是广义Hamilton系统且具有Bi-Hamilton结构和Multi-Hamilton结构;进而利用它的依赖于谱参数的一般守恒密度的积分在约束条件下求泛函导数的方法,得到了广义TD族的Hamilton函数与守恒密度之间的对应关系,这些性质对于由本文提出的2×2谱问题所导出的等谱孤子族仍成立;另外此谱问题与AKNS系统存在着规范变换,位势之间有广义Miura变换,而孤子方程之间也满足一定的等价关系。
其他文献
本文在算子理论框架下研究了离散时变线性系统的同时强镇定性问题.研究主要包括以下内容:  1.离散时变线性系统的强镇定的充分必要条件.  2.线性系统的所有稳定控制器的
本文讨论了两类发展方程:与时间相关的对流扩散方程和线性抛物型积分微分方程的改进弱Galerkin有限元方法,得到了这两类问题离散格式的误差估计。  第一章针对与时间相关的对
人们通常在随机向量对称的条件下,研究随机级数的a.s.S-可和性与a.s.收敛性的关系及a.s.S-有界性与a.s.有界性间的联系。本文首先对[1]中关于a.s.S-可和及a.s.有界的重要引理
学位
曲面的细分算法采用逐次细分、从离散到离散,最终得到所需要的曲面,避免了以往的从离散到连续,再从连续到离散的程序。细分算法的思想较为简单,实施也较方便,已成为计算机辅
结构和表示理论是李代数理论中的两个最主要的课题。仿射李代数的顶点算子表示在数学和物理的很多领域有着非常重要和有趣的应用。对仿射李代数基本表示的第一个构造,通常称之