二重B-值随机Dirichlet级数收敛性和线性增长性

来源 :湖北大学 | 被引量 : 0次 | 上传用户:goodcareer
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
到目前为止,随机Dirichlet级数的文章多,内容丰富,但关于二重随机Dirichlet级数的研究还比较少.自从田范基率先将耳值引人Dirichlet级数之后,B-值Dirichlet级数的研究就得到了迅速发展。本论文主要研究了二重随机变量列{X<,mn>}在某阶矩一致有界条件下的收敛性和线性增长性。
其他文献
在编码理论中,可以由一些较短的码来构造新的码,矩阵积码就是一类由某些较短的码构造而来的码,如经典的(u|u+v)-构造.设q是素数的幂,C是复数域.希尔伯特空间Cqn=Cq(0)…(0)Cq的K
在这篇论文中,我们研究了两类右富足半群的相关性质及其结构.本文分为两章,每章的内容相对独立. 在第一章中,我们引入了FR-系的概念并由此得到了F-rpp半群的构造方法。作为这一
前人已研究了随机三角级数∑X cos (nt+φ)的很多性质:连续性,a.s.收敛性,可积性,连续模的估计等.但对于多维的三角级数研究的不多.本文在[1]的基础上,把随机三角级数的结果推广到无
从已有的文献中,我们知道Kakeya猜想与Kakeya极大函数猜想有密切的联系,即Kakeya极大函数猜想的解决意味着Kakeya猜想的解决。很多文献对各类Kakeya极大函数进行了大量的估计。
关于有限环上的自对偶码的构造方法已经有很多的研究,在这些构造方法中,用短的自对偶码来构造长的自对偶码是一种很好的构造方法,这种方法称为构建法[1],构建法已经被运用到了有
种群动态模型的研究是种群生态学的重要部分,它研究的是种群的数量动态,空间动态以及种群的结构动态等.在各种情况下,种群在外界的作用因素下数量随时间的变化而变化,各种因素的影
本世纪是生命科学发展的一个关键时期,生物信息学是21世纪自然科学的核心领域之一。它的研究内容是非常丰富的,目前在某些方面的研究已经取得了重要进展,但是至今还有许多没有得
单类问题是一种无监督的学习问题.它主要用于outlier检测,奇异点检测等问题.目前,基于统计学习理论的算法,如SVM和boosting,在处理有监督的学习问题上卓有成效.显然,能否设计统计学习
当样本个体较易排序且花费较少时,相较于简单随机抽样(SRS),排序集抽样(RSS)是一种更为精确有效的抽样手段,它常结合一些传统优良的估计方法来估计总体均值或总体方差。在平衡的