氮化镓(GaN)相关论文
氮化镓(GaN)作为第三代半导体材料的典型代表,具有高击穿电场强度和高热导率等优异的物理特性,是制作高频微波器件和大功率电力电......
第三代半导体材料氮化镓(GaN)是一种直接带隙宽禁带半导体,具有较高的电子饱和速度及载流子迁移率、高热导率、出色的击穿强度和耐......
自石墨烯(graphene)开创性工作以来,科研工作者就不断挖掘和研究碳族以外的新型二维材料。其中,以二硫化钼(MoS2)为代表的过渡金属硫系......
基于0.15 μm GaN HEMT工艺,设计并实现了一款超宽带毫米波GaN低噪声放大器(LNA)微波单片集成电路(MMIC).该放大器采用4级级联结构......
氮化镓(GaN)高电子迁移率晶体管(HEMT)具有高工作电压、大功率密度、高截止频率等特点,被广泛应用于微波射频领域.然而GaN材料内部......
第三代半导体材料氮化镓(GaN)具有宽禁带、高临界击穿场强、高电子迁移率、高饱和电子漂移速度等优良特性,基于GaN材料的功率开关......
应用一种分子动力学的方法,模拟预测了氮化镓(GaN)量子点在应变状态下的弹性模量和体积模量.通过在闪锌矿和纤维锌矿两类模型上施加不......
利用室温光致发光(PL)技术研究了在6H-SiC(0001)上用金属有机物化学汽相沉积(MOCVD)外延生长的GaN薄膜"黄带"发光(YL)特点,与扫描......
针对氮化镓高电子迁移率晶体管(GaN HEMT)沟道温度过高导致器件性能下降的问题,提出一种降低GaN HEMT沟道温度的新结构,通过优化沟......
分析寄生电感与结温对GaN并联电路的性能影响。首先理论分析寄生电感与结温的影响情况,得出这些因素与电路损耗的关系式;并且结合......
氮化镓(GaN)材料已成功应用于光电子器件、高频功率器件等领域.近年来,由于GaN优异的材料特性,例如机械、热、化学稳定性以及生物兼......
基于凹槽栅增强型氮化镓高电子迁移率晶体管(GaN HEMT)研究了不同的栅槽刻蚀工艺对GaN器件性能的影响。在栅槽刻蚀方面,采用了一种感......
射频功率放大器作为现代无线通信系统中发射机的重要组成部分,广泛应用于卫星通信、电子对抗、雷达、航天航空和微波通信等领域中......
采用有限元计算软件并结合多层膜理论,封蓝宝石衬底上氢化物气相外延(HVPE)生长氮化镓(GaN)厚膜的应力情况进行研究。由于衬底和厚膜不......
回 回 产卜爹仇贱回——回 日E回。”。回祖 一回“。回干 肉果幻中 N_。NH lP7-ewwe--一”$ MN。W;- __._——————》 砧叫]们......
GaN作为第三代半导体材料,具有宽能带间隙、高电子迁移率以及高导热性等优异特性,基于GaN材料的蓝光LED引领了半导体照明技术的第......
介绍了GaAs,InP和GaN等几种重要化合物半导体电子器件的特点、应用和发展前景。回顾了GaAs,InP和GaN材料的材料特性及其器件发展历......
GaN作为一种宽带隙(3.4 eV)的直接带隙化合物半导体材料,具有高热导率、高电子迁移率、良好的化学和热稳定性,在制备发光二极管(li......
氮化镓GaN(gallium nitride)材料非常适合应用于高频、高功率、高压的电子电力器件当中。目前,GaN功率电子器件技术方案主要分为Si......
近20年来,以碳化硅和氮化镓为代表的宽禁带半导体功率器件具有电气性能和热性能等方面的优势,正在成为硅器件的强力替代品。业界成......
介绍5G时代新技术特征,由此引出需要新的器件支持;分析氮化镓材料特性以及工艺和器件的特性,详细说明5G时代需要氮化镓器件,特别是......
GaN作为第三代半导体材料,具有宽的禁带宽度、高的电子迁移率以及良好的导热性能等优异的特性,能够被广泛地应用于光电半导体、高......
作为最重要的第三代半导体材料之一,纳米氮化镓(Ga N)也引起了人们的广泛关注与重视.本文采用微波等离子体化学气相沉积(microwave......
通过分别改变电感耦合等离子体(ICP)刻蚀过程中的ICP功率和DC偏压,对ICP刻蚀GaN材料的工艺条件和损伤情况进行了系统的研究。刻蚀......
氮化镓(GaN)高电子迁移率晶体管(HEMT)由于其高电子迁移率、高电流密度及高耐压等突出特性而受到广泛关注,成为电力电子器件的一个重要......
氮化镓(GaN)纳米线由于具有优异的物理性质和化学稳定性高等特点,在纳米激光器、传感器、高温高功率器件等领域存在广泛的应用前景。......
世界的能源格局就是全球的竞争格局。乘用车作为重要的能源消费体,其能源使用路径的变更对国家战略有深远影响。车辆技术变革在我......
目前异质外延技术能够得到较高质量的氮化镓(GaN)薄膜,衬底普遍采用蓝宝石、碳化硅以及硅等。各种技术包括缓冲层、外延横向生长技......
功率开关晶体管是电力电子系统的核心器件。氮化镓(GaN)因其具有禁带宽度大、临界击穿电场高、电子饱和速度大等优势,使之在电力电子......
首先分析了在制作GaN基LED时,采用干法刻蚀技术会对材料的表面和量子阱有源区造成损伤,影响了GaN基LED的内量子效率。针对这个问题......
介绍了一款L波段自偏压内匹配功率放大器。器件采用0.25μm工艺GaN高电子迁移率晶体管(HEMT)管芯,内匹配技术对单胞管芯进行输入输......
随着功率半导体行业的发展,新型材料氮化镓和碳化硅在功率半导体器件的技术已经日趋成熟,在最近几年的发展尤其迅速,一些以氮化镓......
对硬脆材料氮化镓(GaN)单晶的机械研磨和化学机械抛光(CMP)加工工艺进行了研究。在机械研磨工艺中,研究了不同材料的研磨盘和不同......
III-V族半导体化合物氮化镓(Ga N)是第三代直接带隙半导体材料,带隙宽度3.4 e V,有耐高温、耐腐蚀、电子迁移率高、良好的化学和热......
近年来,GaN材料因其优异的光电特性而被广泛应用于光电子器件制备。Si基GaN光电子器件虽然在实现器件集成方面具有优势,但两种材料......
由于铁电材料具有大的极化且可反转以及热电、压电和介电非线性等丰富的特性,铁电材料与半导体材料结合将获得新颖的物理性能,从而......
研制了一款可应用于新一代宽带无线移动通信系统的26 GHz GaN单片微波集成电路(MMIC) Doherty功率放大器(DPA)。Doherty功率放大器......
图形化蓝宝石衬底作为GaN基LED照明外延衬底材料,由于其能降低GaN外延薄膜的线位错密度和提高LED的光萃取效率的显著性能在近几年来......
氮化镓GaN(gallium nitride)作为第三代半导体材料的代表之一,具有临界击穿电场强、耐高温和饱和电子漂移速度高等优点,在电力电子......