SOR迭代法相关论文
随着计算机技术、云计算、人工智能、数据挖掘等技术的发展,出现了越来越多的仿生算法。例如:遗传算法、粒子群优化算法、细菌觅食......
本文研究了求解约束及其无约束极值问题的迭代方法,研究的主要内容是结合Jacobi-Newton迭代法和SOR-Newton迭代法这两类迭代法所构......
一般认为,SOR方法是对Gauss-Seidel方法用松驰技巧得到的,但实质上SOR方法是对Jacobi方法做松弛,得到JOR方法,然后采用Seidel技巧得到......
运用矩阵分裂理论及比较定理,用预处理方法解大型线性方程组Ax=b,给出预处理后一种改进的SOR迭代方法,证明这种方法不仅能加速SOR......
使用预处理方法解大型线性方程组Ax=b,结合矩阵分裂理论,给出预处理后多种分裂形式的SOR迭代方法,并与一般的预处理方法进行比较分......
在预条件方法解大型线性方程组Ax=b时,给出预条件后多种分裂形式的SOR迭代方法,说明这些方法能够使SOR迭代法收敛,并与一般的预条......
摘要:《计算方法》课程对于培养学生数值计算思想、应用科学计算解决实际问题的能力起着重要的作用。该文结合自己的教学实践和科研......
目的在预条件后运用SOR迭代法求解大型线性方程组Ax=b,以加快迭代法的收敛性。方法结合矩阵分裂理论及比较定理,引入参数α,给出预......
在古典SOR迭代法和SSOR迭代法的基础上,提出预条件P=I+S下的SSOR迭代法,并在系数矩阵为非奇异M-矩阵的情况下,给出比较定理.......
运用预条件P=(I+C)解大型线性方程组Ax=b,给出预条件后一种改进的SOR迭代方法,说明这种方法不仅能加速SOR迭代法的收敛性,而且优于一......
对于迭代法解线性方程组,运用矩阵分裂理论及比较定理,对超松弛迭代法(即SOR方法)和预条件P=I+Cα后的Gauss-Seidel迭代法(称为IMGS方......
结合矩阵分裂理论及比较定理,给出一种改进矩阵分裂形式的预条件含参数SOR迭代方法,证明这种方法不仅能加速SOR迭代法的收敛性,而......
目的讨论预条件后用迭代法求解的线性方程组Ax=b。方法利用预条件后系数矩阵非负分裂形式的多样性,给出一种含参数形式的非负分裂......
目的 快速求解线性方程组Ax=b。方法 将双分裂SOR迭代方法和矩阵的预条件处理方法相结合,对系数矩阵先进行预条件处理,再给出非负......
文章讨论了系数矩阵为相容次序矩阵、Jacobi迭代矩阵的特征值在三种情形时对应的AOR方法的收敛条件,并给出了当Jacobi送代矩阵特征......
本文给出了以(I?S?R?Q)为预条件矩阵的预条件SOR迭代法,证明了迭代法的收敛性,并比较了预条件SOR迭代法与经典SOR迭代法的收敛速度,数值......
在简述内容的基础上,给出了当Jacobi迭代阵‖B‖m=∑↑n↑i=1b^(i)≥1,b^(i)=max↓1≤j≤n{bij}时SOR迭代法收敛的充分条件及误差估计式。将收敛的限制由‖B‖〈1部分地扩充到‖......
本文在系数矩阵为非奇方矩阵时,讨论了求解线性方程组的SOR迭代法的收敛性。并得到了几个SOR迭代法收敛的判定准则.......
研究M-矩阵类的预条件SOR迭代法,将其与相应矩阵的AOR迭代法进行比较,得到它们收敛性的比较定理,并从理论上证明预条件SOR迭代法优......
在求解大型线性方程组Ax=b时,常采用预处理方法求解,也就是对方程组两边同时乘以非奇异矩阵P再求解.运用矩阵分裂理论及比较定理,......
讨论预条件后用迭代法求解的线性方程组Ax=b.在预条件的基础上引入参数,给出一种含参数形式的非负分裂.证明这种分裂形式可以加速S......
鞍点问题广泛出现在科学计算和工程应用的许多领域中,对这类线性系统的数值解法的研究已成为近年来的一个热点.基于鞍点问题系数矩......
在运用SOR迭代法求解大型线性方程组Ax=b时,结合矩阵分裂理论及比较定理,给方程两边同时左乘非奇异矩阵P(也称为预处理矩阵),对新的......
讨论一类含参数的SOR迭代法求解线性方程组Ax=6,得到参数在一定范围内取值时这种方法的收敛性优于一般的SOR迭代法,同时给出参数取不......
给出预条件方后线性方程组的系数矩阵的一类含参数的分裂形式,使系数矩阵的分裂更加一般化,同时讨论在该形式下的SOR迭代法的收敛......
近年来对于求解线性方程组的技术有了很大的发展,特别是预条件技术的出现使得解线性方程组的速度有了很大的提高,在预条件技术中最主......
基于并行多分裂算法的思想及SOR迭代格式,本文提出一种求解H-矩阵线性方程组新的并行多分裂SOR迭代法,新方法某种程度上避免了SOR......
目前选取逐次超松弛迭代法(SOR)最优松弛因子的基本思路是:在区间(0,2)上,根据确定的分割策略,选取分割点的值作为松弛因子来计算......
选择了求解Hilbert矩阵线性方程组的三种数值解方法,提出了SOR迭代中的松弛因子的预处理方法,比较了高斯-赛德尔迭代和SOR迭代数值......
针对大型线性方程组问题构造了一种含有待定参数和预条件因子的新迭代解法,将其称为预条件SOR型迭代法.当待定参数ω=1时,预条件SO......
给出了一种PSOR方法,在理论上证明了PSOR方法的渐近收敛速度快于基本的AOR迭代法.同时,给出了在条件0〈ω≤1下,PSOR方法中参数ω的最......
提出了直接利用计算机确定最优松弛因子的3种方法,并通过实例验证了算法的可行性和有效性.......
超松弛迭代法(简称SOR法)是解决大型稀疏矩阵方程组的有效方法之一,是一种一阶线性定常迭代法。从介绍解线性代数方程组的SOR方法......
求解大型稀疏线性方程组的迭代法不仅是数值代数理论部分的主要内容,也是求解实际问题的重要方法.针对3种典型的求解大型稀疏线性......
测量平差中经常会遇到方程组的求解,大规模的方程组求解计算量大,只能利用程序求解。可以将数值分析中的线性方程组的SOR迭代法运......
对常用的两类预条件方法求解线性方程组Ax=b,在它们都能够加速SOR迭代法的情况下,运用矩阵分析及矩阵分裂理论,给出两类预条件后SO......
在运用SOR迭代法求解线性方程组Ax=b时,针对常见的预条件矩阵P=(I+S),本文给出预处理后迭代法的一类含参数分裂形式As=1γ{[αI-γ......
在预条件P=(I+D)下提出新的SOR迭代法,讨论了新方法的敛散性,并给出了新预条件SOR迭代法与经典SOR迭代法之间的比较定理,最后给出一个......