Weyl定理相关论文
函数空间上的算子理论是泛函分析一个的重要分支,它与量子力学、概率论、信息和控制论等领域都有着密切之联系.过去的数十年间,对......
本文研究内容涉及定义在一秩算子类上的初等算子的范数和p-弱亚正规算子的Riesz幂等元、Weyl定理及正规性等几方面的内容.在初等算......
谱理论是算子理论算子代数中的一个重要分支,它与其他学科有着密切的联系,在物理学、量子力学等学科中的应用非常广泛.谱理论中的W......
算子谱理论是算子理论的重要研究领域.由于物理学、量子力学、工程技术等学科中的许多问题都能够转化为算子方程(例如,代数方程、微......
Weyl定理是算子谱理论的重要分支之一,受到许多学者的关注.近年来,有很多学者以单值延拓性质为工具研究Weyl型定理,为Weyl定理的探......
本文主要刻画了部分等距算子的弱正规性,包括拟正规性、次正规性、亚正规性、p-亚正规性(p>0)、ω-正规性、仿正规性、normaloid性......
线性算子的谱理论是现代数学最基本的理论之一,它在数学,物理,工程等方面都有重要的应用,也是近代泛函分析的一个重要分支.近几十......
学位
在算子理论中,算子谱理论作为算子理论的一个重要组成部分,自然受到了国内外诸多学者的青睐.随着学者们对算子谱理论的研究,得到了......
算子谱理论,作为现代数学最基本的理论之一,一直是泛函分析中经久不衰的研究课题.它不仅在偏微分方程、非线性科学和量子力学中有......
本篇论文中,主要研究ωF(p,r,q)类算子的性质,重点讨论ωF(p,r,q)类算子与Fuglede-Putnam定理的关系,ωF(p,r,q)类算子与Weyl定理的关系以及......
投影、算子谱理论、Weyl定理及效应代数是近年来算子理论中比较活跃的一些研究课题,在算子理论的研究中有着重要的理论价值和应用价......
设Mc:=(A 0 C B)为定义在Banach空间X(+)y上的算子矩阵. 讨论和获得Weyl定理和Browder定理对Mc成立的一些充分条件.......
若T或T*是无穷维可分的Hilbert空间H上的代数k-拟-A类算子,则Weyl定理对任意的f∈H(σ(T))成立,其中H(σ(T))为σ(T)的开邻域上解......

