Fredholm算子相关论文
线性算子谱理论是现代泛函分析的一个重要分支,在理论和应用中都有十分重要的意义。本文主要讨论了无穷维Hamilton算子的谱,给出了一......
本文主要研究与平面分片光滑动力系统相关的轨道切分支的数值研究和双同宿环的数值计算和分析.其中轨道切分支的数值研究包括周期......
有关Rm空间上动力系统的全局稳定性、结构稳定性以及分支问题的数值算法等已经有了非常多经典的结果,参见文献[4,5,6,33,65,62].随......
在许多科学领域的研究中,例如:力学,物理学,生物数学,经济数学,自动控制等。常微分方程已不能精确的描述客观事物了,许多现象都用......
近年来,由于来自换位提升理论,插值理论,以及系统控制理论中某些应用问题的需要,缺项算子矩阵的补问题引起了众多学者的兴趣,本学......
硕士学位论文《Banach空间上算子与算子谱的相关探讨》是泛函分析学科Banach空间理论与算子理论有机结合进行研讨的产物.本文共有......
在本报告中,我们主要研究了一些全纯函数空间上复合算子的有界性,紧性,弱紧性和这种算子的一些其它性质。全文共分四章。第一章是本报......
本文将奇点理论和非线性分析方法相结合,应用到无限维Banach空间中的分歧理论中去,主要研究单参数非线性分歧理论中分歧点的判定与......
微分方程边值问题己经广泛应用在物理、医学、化学等很多学科中。近年来,现实生活中不断出现的大量问题,需要人们利用微分方程边值......
在研究一些有定解条件限制的Hamilton系统时辛对称Hamilton算子具有重要的作用,因此研究辛对称Hamilton算子的性质是十分必要的.本......
分数阶微分方程边值问题的研究与数学学科的其它分支有着密切的联系。虽然已有许多学者研究这类方程,但迄今为止,建立它们的理论只......
许多生物体都具有一种特性,它们能够通过探测、整合和处理其生存环境中的各种内部和外部的信号来决定自身的移动.这种移动是生物体......
在经典的Hardy空间H2上的Toeplitz算子一直以来都是人们研究的主要内容。本文主要讨论了在复空间中单位球及复平面内单位圆情形下,......
该文利用Orlicz空间理论定义了一类Bergman-Orlicz空间,证明Bergman-Orlicz空间为Orlize空间$L{varphi}$的一个闭子空间,并对一些......
投影、算子谱理论、Weyl定理及效应代数是近年来算子理论中比较活跃的一些研究课题,在算子理论的研究中有着重要的理论价值和应用价......
本文主要做了三方面的工作:一、利用算子谱的精密结构分析的方法研究Hardy空间上-类算子Toeplitz算子谱的精密结构及其某些子集的......
设H和K是无限维的Hilbert空间,首先A∈B(H),B∈B(K)和C∈B(K,H)为给定的算子且R(B)为闭时,得到了对一切X∈B(H,K),(A C X B)是左(右)可逆算子的等......
学位
算子矩阵是近年来算子理论中最为活跃的研究课题之一,其研究涉及到基础数学与应用数学的许多分支,如矩阵理论、优化理论和量子物理等......
本文利用空间分解法研究了可分Hilbert空间上的2×2阶上三角型算子矩阵M=(A0CB)∈(β)(H1(⊕)H2)的闭值域性和Fredholm性,并分别得......
学位
通过利用Mawhin重合度理论讨论了一类具有时滞和捕获的捕食食饵系统的全局周期解的存在性,得到了周期解存在的充分条件.......
人们知道Fredholm算子L的小扰动的零空间维数不大于工零空间的维数dimN(L).证明了对任给正整数k≤dimN(L)存在一个L的扰动,它的零......
期刊
本文考虑了一类二阶非线性微分方程广义多点边值问题.利用Mawhin的重合度定理得到了一个存在性定理.同时给出-个例子说明结果的可......
期刊
设H,K为可分Hilbert空间,A E B(H),B ∈B(K)是给定的有界线性算子,定义Mc =(AC/OB).刻画了Mc的左Weyl谱(右Weyl谱,Weyl谱)的并集.......
讨论了一类无穷维Hamilton算子的Fredholm性,由于无穷维Hamilton算子是分块算子矩阵,将它的Fredholm性用它的元素算子的某种组合来......
通过利用Mawhin重合度理论讨了一类具有非线性功能反应和捕获的捕食食饵系统的全局周期解的存在性,得到了周期解存在的充分条件.......

