三阶微分方程相关论文
常微分方程的定性稳定性理论一直是国内外学者研究的热点,也是微分方程解的重要性态。随着科技的不断发展和研究手段的逐步更新,解......
本文主要讨论了几类三阶非线性微分方程的奇摄动边值问题的解的存在性和渐近性态.全文共分为四章.第一章简述了奇摄动问题的研究概......
本学位论文运用上下解的单调迭代方法、全连续算子的不动点定理以及锥上的不动点指数理论研究了几类三阶时滞微分方程解的存在性.......
本文共分为三章. 第一章简要介绍了微分方程边值问题的历史背景以及国内外研究概况并给出了本文所需的一些基本工具. 第二章通......
本文利用非线性泛函分析中的拓扑度方法,主要研究了非线性三阶微分方程及方程组变号解的存在性与多重性,得到了一些新的结论。全文共......
随着科学技术的发展和人类认识问题的不断深入,人们在求解工程中各种微分方程的过程中,越来越需要一种不但求解精度高、并行程度高,而......
本文运用上下解的单调迭代方法,全连续算子的Leray-Schauder不动点定理和锥映射的不动点指数理论讨论三阶非线性微分方程 此处公......
本文主要运用微分不等式的技巧(或称为上、下解方法),在一定条件下证明了一类三阶非线性微分方程(不带小参数)三点边值问题解的存在......
近年来,非线性微分方程的边值问题已经成为微分方程研究领域的一个重要分支.它在气体动力学、流体力学、天文学、经济学、非线性光......
本文运用锥拉伸与压缩不动点定理及上下解的单调迭代方法讨论了三类三阶常微分方程多点边值问题正解的存在性.主要结论有: 1.考......
本文主要利用反序上下解方法以及一些相关不动点指数定理,在Banach空间中,讨论了几类三阶微分方程周期解的存在性与唯一性。 本文......
三阶微分方程起源于应用数学和物理学的各种不同领域中,例如,带有固定或变化横截面的屈曲梁的挠度,三层梁,电磁波,地球引力吹积的涨潮等......
三阶微分方程在我们的生活中有着非常广泛的应用,其中涉及到了应用数学和物理学的各种不同领域,例如,地球引力吹积的涨潮、三层梁......
用单调迭代法研究一类三阶微分方程边值问题解的存在性,不仅证明了该问题解的存在性,而且得到了其迭代格式.......

